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Over the past two decades, a large literature examining psychological changes across women's ovulatory cycles
has accumulated, emphasizing comparisons between fertile and non-fertile phases of the cycle.While some stud-
ies have verified ovulation using luteinizing hormone (LH) tests, counting methods – assessments of conception
probability based on counting forward from actual or retrospectively recalled onset of last menses, or backward
from actual or anticipated onset of next menses – are more common. The validity of these methods remains
largely unexplored. Based on published data on the distributions of the lengths of follicular and luteal phases,
we created a sample of 58,000+ simulated cycles.Weused the sample to assess the validity of countingmethods.
Aside frommethods that count backward froma confirmed onset of nextmenses, validities aremodest, generally
ranging from about .40–.55.We offer power estimates andmake recommendations for futurework.We also dis-
cuss implications for interpreting past research.
niversity of New Mexico, Albu-

t al., How valid are assessments of conception
lution and Human Behavior (2015), http://dx.d
© 2015 Published by Elsevier Inc.
1. Introduction

Two studies in the late 1990s triggered a rapid expansion of interest
in psychological changes related to the ovulatory cycle (Gangestad &
Thornhill, 1998; Penton-Voak et al., 1999; see also Grammer, 1993).
Both documented increases in women's preferences for purported
indicators of heritable fitness at high fertility relative to low fertility
within the cycle. A decade and a half later, there are dozens of
studies of cycle shifts in women's mate preferences and dozens more
of cycle shifts in women's attractiveness, including changes in women's
body odors, voices, facial appearance, and proceptive behavior
(reviewed in Gildersleeve, Haselton, & Fales, 2014a; Gangestad,
Thornhill, & Garver-Apgar, 2015; Haselton & Gildersleeve, 2011;
Thornhill & Gangestad, 2008).

Cycle shift effects have attracted attention and intense research ef-
fort for at least two reasons. First, cycle shifts are non-intuitive and dif-
ficult to explain without an explicit evolutionary account. Therefore,
these findings have been viewed as powerful evidence of the utility of
an evolutionary approach for understanding human behavior
(e.g., Neuberg, Kenrick, & Schaller, 2010). Second, these findings have
challenged the widespread prior conclusion that human sexuality –
unlike that of many non-human species, including most other primates –
is independent of hormonal control (e.g., Symons, 1979). Thus, the discov-
ery of cycle shifts in women's mate preferences and attractiveness has
heralded a potentially radical revision to understandings of human sexual-
ity and its evolutionary and hormonal underpinnings.

In ameta-analysis of studies examining cycle shifts inwomen'smate
preferences, Gildersleeve et al. (2014a) found robust butmodest effects.
In a subsample of studies examining targeted cycle shifts in attraction to
hypothesizedmalefitness indicators (e.g., facial, body, and vocalmascu-
linity; facial symmetry and scents associated with symmetry; and be-
havioral dominance), weighted mean effect sizes in a short-term
mating context and unspecified context were .26 and .20, respectively
(Hedge's g, comparable to Cohen's d). In a more recent meta-analysis
of studies examining detectable changes accompanyingwomen's fertile
phase, Gildersleeve and Haselton (2014) found robust effects of compa-
rablemagnitude. Subsamples of studies examining fertility cues that are
relatively likely or unlikely to be under women's volitional control
(e.g., proceptive behavior vs. natural body odor attractiveness) yielded
mean effect sizes of .20 and .28, respectively.

At the same time,many studies have yielded null findings. Indeed, of
42 published and unpublished studies in Gildersleeve et al.'s (2014a)
subsample of targeted cycle shifts, 17 (40%) produced a statistically sig-
nificant finding, whereas 60% did not. This variability in outcomes has
probability in ovulatory cycle research? Evaluations,
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Fig. 1.Hypothetical cycle of a womanwhose cycle lengthwas 28 and day of ovulationwas
day 14. The “fertile window” in this cycle extends from forward count day 9 to forward
count day 14. By the reverse count, her day of ovulation was day 15, and her fertile
phase was reverse count day 20 to reverse count day 15. The follicular phase ends at ovu-
lation. The luteal phase begins at ovulation.
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led some to argue that previous findings were false positives, and sup-
port for effects was largely due to publication bias (Wood, Kressel,
Joshi, & Louie, 2014). Others have noted that wide variation in methods
used to assess women's fertility within the cycle permits considerable
analytic flexibility. As a result, researchers may well have tried multiple
analyses (e.g., with different high- and low-fertility windows) and re-
ported only favorable results (e.g., Harris, Pashler, & Mickes, 2014). In
other words, positive findings might have been “p-hacked”
(Simonsohn, Nelson, & Simmons, 2014).

To empirically examine publication bias and p-hacking, Gildersleeve,
Haselton, and Fales (2014b) constructed p-curves of significant findings
in the meta-analysis sample. Consistent with the existence of real cycle
shifts, these curves were robustly right-skewed, with a disproportion-
ately large number of p-values b .01.The estimated mean effect size
was .30, slightly greater than meta-analytic estimates. As well, p-
curves were consistent with statistical power of only about 33%. One
possible explanation for variability in the significance of cycle shift ef-
fects, then, is relatively weak power.

Most studies examining cycle shifts have assessed conception prob-
ability using a counting method – either counting forward from last
menstrual onset or backward from next menstrual onset to the current
day to assess whether a woman is presently in her “fertile window.” Yet
the validities of these methods have never been thoroughly evaluated,
let alone quantified (but see our discussion of Gonzales & Ferrer, 2015,
below). An evaluation of these methods is timely for two reasons.
First, such an evaluation can make clear which methods have greatest
validity and thereby encourage more uniform and accurate procedures
moving forward. Second, extant data suggest that effect sizes are robust
but modest; and the typical study, underpowered. However, there re-
mains the question ofwhy. Effect sizes detected in studies are a function
of the “true” effect of conception probability and the validitywithwhich
fertility status is measured. One possibility is that the effect of concep-
tion probability truly is small (e.g, Harris et al., 2014). However, an alter-
native possibility is that effect sizes merely appear small because
measurement is poor. For example, if the correlation between estimated
and true conception probability is only .5, the study will produce an ef-
fect size 50% of the true effect size. Because we do not know the
validities of methods used to assess conception probability, we cannot
yet draw confident conclusions based on the extant literature.

In this paper, we evaluate the validity of these methods. We aim to
contribute to methodological standards for the future, but our results
can also contribute to a proper theoretical interpretation of findings to
date.

1.1. Methods used in studies of shifts across the ovulatory cycle

Awomanhas a non-zero conceptionprobability –probability of con-
ceiving following unprotected sex – on the day of ovulation and up to
5 days prior (e.g., Baird et al., 1995). All days outside of this “fertile win-
dow” are non-fertile. The follicular phase extends from the onset of
menses until ovulation. The luteal phase extends from ovulation until
next menstrual onset. The fertile window, then, is the latter part of the
follicular phase. Aside from a few hours following ovulation, the luteal
phase is non-fertile. See Fig. 1.

Researchers have typically used one of twomethods to assesswhere
women fall within the ovulatory cycle: Detection of an LH surge and
day-of-cycle counting.

1.1.1. LH detection
Luteinizing hormone (LH), released by the pituitary gland, charac-

teristically surges 24–36 hours prior to ovulation (e.g., Guermandi
et al., 2001). Typically marketed to women actively trying to conceive,
test sticks that detect an LH surge are commercially available
(e.g., Clearblue©, OvuSign©). Kits typically consist of plastic-encased
strips that contain an immunoassay sensitive to LH in urine.
Please cite this article as: Gangestad, S.W., et al., How valid are assessmen
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When correctly used, LH detection tests are very accurate. In one
study, Clearblue© found that over 99% of LH surges were detected by
their tests (see http://www.clearblueeasy.com/healthcare/clearblue-
digital-ovulation-test.php). As LH surges vary in their duration and in-
tensity (Direito, Bailly, Mariani, & Ecochard, 2013; Park, Goldsmith,
Skurnick, Wojtczuk, & Weiss, 2007), however, accurate detection is en-
hanced when LH tests are administered daily until the onset of the
surge. Some studies (e.g., Fales, Gildersleeve, & Haselton, 2014) have
followed up positive results by verifying the date of next menstrual
onset, which usually (~80% of the time) occurs 14± 2 days after ovula-
tion (e.g., Baird et al., 1995).

Studies that use LH tests are typically within-subject designs, with
individual women assessed twice during a cycle: once when fertile, as
verified by LH tests, and once during the mid-luteal phase
(e.g., Gangestad, Thornhill, & Garver, 2002, 2014; Gangestad, Garver-
Apgar, Cousins, & Thornhill, 2014; Gangestad, Thornhill, & Garver-
Apgar, 2005; Pillsworth & Haselton, 2006; Durante, Griskevicius, Hill,
Perilloux, & Li, 2011), though some studies have assessed women 3+
times (e.g., Burriss et al., 2015).When fertile phase assessments precede
luteal phase assessments, researchers typically schedule luteal phase
sessions to follow fertile phase sessions by a week or more.When luteal
phase assessments precede fertile phase assessments, researchers typi-
cally ask women to report their menstrual onset between sessions,
thereby verifying that the luteal phase session did in fact occur during
the luteal phase (e.g., Larson, Pillsworth, & Haselton, 2012, Larson,
Haselton, Gildersleeve, & Pillsworth, 2013).

A few studies have scheduled women's high-fertility session only
after detecting an LH surge (e.g, Cantú et al., 2014). However, most
have scheduled women's high-fertility session on a day when they
were expected to be fertile but only counted that session as fertile if
women experienced an LH surge no more than 2 days before or
4 days after it (e.g., Gildersleeve, Haselton, Larson, & Pillsworth, 2012).
Although one can assign specific continuous conception probabilities
depending on timing of a session relative to the LH surge (e.g., Burriss
et al., 2015), most studies to date have simply categorized sessions as
being in or outside of the fertile window.
1.1.2. Day-of-the-cycle counting methods
The most widely used methodology involves counting days from

menstrual onset to assess cycle position.Within this approach, multiple
methods have been used.

The forwardmethod counts days from last menstrual onset forward
to the day of assessment. For instance, if a woman was assessed on the
15th of the month, and her last menstrual period (“day 1” of her cycle)
began on the 5th of the month, then her session was on “day 11” of
her cycle.
ts of conception probability in ovulatory cycle research? Evaluations,
015), http://dx.doi.org/10.1016/j.evolhumbehav.2015.09.001
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The backwardmethod counts days from next menstrual onset back-
ward to the day of assessment (e.g., Puts, 2005). If a woman was
assessed on the 15th of the month, and her next menstrual period
began on the 25th of the month, then her session was on “reverse
count day 10” of her cycle (10 days prior to the end of the cycle, as
marked by the onset of her next menstrual period). The rationale for
backward counting is that luteal phase lengths are less variable than fol-
licular phase lengths (e.g., Baird et al., 1995; Fehring, Schneider, &
Raviele, 2006). Hence, referencing a woman's day of the cycle relative
to the end of it, rather than its onset, should be a more accurate way
of assessing her fertile window. The method, however, requires an as-
sessment of onset of next menses. Some researchers have followed up
with women to verify their date of next menstrual onset. For practical
reasons, however, many researchers have estimated when women
will start their next period based on women's self-reports of their date
of last menstrual onset and typical cycle length orwomen's own predic-
tion of when their next period will begin.

Counting methods must convert day of the cycle into a conception
probability. The most common approach to date defines discrete win-
dows. By the forward approach, researchers define a particular range
of days as high fertility, and some or all of the remaining days as low fer-
tility. Different studies have designated different windows. Hence,
Penton-Voak et al. (1999) and others (e.g., Little, Jones, & Burriss,
2007), following conception probabilities published by Jöchle (1973),
defined days 6–14 as high fertility. Others have defined the high fertility
window differently (see Gildersleeve et al., 2014a). As noted by
Gildersleeve et al. (2014a) and Wood et al. (2014), window sizes have
varied; 6–9 days are most common.

Women ovulate on different days of the cycle, as both follicular and
luteal phase lengths vary. Therefore, some researchers have represented
conception probability as a continuous measure. Conception probabili-
ties are actual probabilities of conception amongwomen having unpro-
tected sex on different days of the cycle, the most widely used of which
were developed by Wilcox, Duncan, Weinberg, Trussell, and Baird
(2001). For instance, day 7, 12, 19, and 27 have conception probabilities
of .017, .084, .032, and .007, respectively. See Fig. 2. With a forward pro-
cedure, women are assigned a conception probability corresponding to
their current day in cycle. With a backward procedure, women can be
placed on a standard 28- or 29-day cycle through calculations of how
far they are from the end of their cycles and assumptions that, on a stan-
dard 29-day cycle, women ovulate on day 15.Women are then assigned
conception probabilities based on the published estimates
Fig. 2. Probabilities of conception resulting from a single act of intercourse by day of the
cycle estimated by Wilcox et al. (2001). For any given cycle, the fertile window lasts up
to 6 days,with varying probabilities of conception resulting froma single act of intercourse
(maximal 1–2 days prior to day of ovulation). Mean day of ovulation (length of the follic-
ular phase) is 15. But day of ovulation varies across cycles, both within and between
women. Probabilities for conception, then, are a function of (a) the distribution of follicular
phase lengths, and (b) variation in probabilities of conception across days within the fer-
tile window.

Please cite this article as: Gangestad, S.W., et al., How valid are assessmen
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(e.g., Gangestad, Garver-Apgar, Simpson, & Cousins, 2007; Puts, 2006).
Finally, some studies have averaged conception probabilities based on
forward and backward procedures, as each could have unique error
(e.g., Gangestad et al., 2007).

1.2. The validity of conception probability measures

How valid are measures of conception probability? That is, how
highly do they correlate with women's true conception probabilities?

1.2.1. LH detection
Aside from more expensive procedures (e.g., measurement of daily

estradiol and progesterone levels, ultrasound; e.g., Cobey, Buunk, Pollet,
Kippling, & Roberts, 2013; Roney & Simmons, 2013), LH detection sticks
offer the greatest accuracy. If, as may be the case, inaccurate classifica-
tion of women as being in the fertile phase vs. the luteal phase is no
more than ~5%, the validity of conception probability, expressed as a
Pearson r (a phi coefficient), equals or exceeds .9. Even with LH detec-
tion, however, some women will be assessed during their fertile phase
but not necessarily on their most fertile days. Validity is .8 if one as-
sumes a misclassification rate of 10% - likely an upper-bound estimate,
and hence one that yields a lower-bound estimate of accuracy.

1.2.2. Counting methods
Counting methods, naturally, are less accurate. But how much so?

And which methods outperform others? These questions remain
unaddressed.

1.3. A methodology to accurately estimate the validity of counting methods

The accuracy of counting methods depends upon a number of para-
metric features of thedistributions ofwomen's cycles. Forwardmethods
depend on the distribution of follicular phase lengths – that is, when
ovulation occurs. Backward methods depend crucially on the distribu-
tion of luteal phase lengths, as well as the precision with which one
knows the length of the current cycle (e.g., based on confirmed onset
of next menses or self-reported typical cycle length).

Much is now known about these distributions. Recently,
Stirnemann, Samson, Bernard, and Thalabard (2013)estimated the day
of conception, via ultrasound fetal biometry (conducted 11–14 weeks
post-conception, with statistical adjustments to reduce error) in nearly
6000women. Aswomen typically conceivewithin hours after ovulation
(e.g., Harper, 1994), the distribution of days of conception effectively
matches the distribution of days of ovulation. Results, then, should
closely match the true distribution of women's follicular phase lengths
(see also Fehring et al., 2006; Wilcox et al., 2001; Cole, Ladner, & Byrn,
2009, who also estimated distribution of follicular phase length, but
with smaller samples and/or less accurate methodology).

Multiple studies have estimated the distribution of luteal phase
lengths (Baird et al., 1995; Cole et al., 2009; Fehring et al., 2006; Lenton,
Landgren, & Sexton, 1984). Additionally, Fehring et al. (2006) report a
modest negative correlation between follicular phase and luteal phase
lengths in a sample of over 1000 women, a value consistent with data
presented by Cole et al. (2009). Cole et al. (2009) partitioned variation
across cycles into between-women andwithin-woman components. Fi-
nally, at least two studies have examined the accuracy of women's self-
reported average cycle length (Jukic et al., 2008; Small, Manatunga, &
Marcus, 2007).

Though this information cannot estimate the accuracy of conception
probability measures algorithmically, a way forward is possible: One
can use this knowledge to simulate a sample that mimics real cycles.
Within a large, representative sample inwhich one knows for each sim-
ulated cycle precisely when ovulation occurred and, hence, which days
are fertile, one can compute and evaluate the accuracy of conception
probability estimates given by various counting methods. We used
ts of conception probability in ovulatory cycle research? Evaluations,
015), http://dx.doi.org/10.1016/j.evolhumbehav.2015.09.001
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Table 1
Characteristics of the simulated representative sample

Observed Target

Mean SD Mean SD

Cycle length 28.56 3.39 28.561 3.34
Length of the follicular phase 15.00 3.44 14.962 3.40
Length of the luteal phase 13.56 2.02 13.503 2.00

Pearson product–moment
correlation coefficients

Observed Target

Lengths of the follicular and luteal phases − .317 − .3004

Lengths of cycle and follicular phase .825 .8291

Lengths of cycle and luteal phase .276 .2551

Notes. N = 56,345.
1 Based on Fehring et al. (2006).
2 Based on Stirnemann et al. (2013).
3 Based on Lenton et al. (1984), Baird et al. (1995), Fehring et al. (2006), Cole et al.

(2009).
4 Based on Fehring et al. (2006) and Cole et al. (2009); value reported in Fehring et al.:

− .323.
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these procedures to estimate the validity coefficients of specific
counting methods.

One other recent study simulated cycles using similar methodology.
Gonzales and Ferrer (2015) used data on parameters of cycle character-
istics reported by Fehring et al. (2006) to create a simulation sample.
Our simulation procedures and those of Gonzales and Ferrer (2015) dif-
fer in a number of ways: First, we used Stirnemann et al. (2013) distri-
bution of day of ovulation, estimated from fetal bimetry, to create a
sample of cycles, whereas Gonzales and Ferrer (2015) used mean day
of ovulation, along with an estimate of its standard deviation, and as-
sumed normality to create their sample. Second, though Gonzales and
Ferrer (2015) attempted to account for inaccuracy of women's esti-
mates of nextmenstrual onset, our estimates, based on pertinent litera-
ture, assumed less accuracy. Third, we examined the effect of an
ovulation, whereas Gonzales and Ferrer (2015) did not. The most im-
portant difference between our simulations and those of Gonzales and
Ferrer (2015), however, is that the two simulations had fundamentally
different aims. Gonzales and Ferrer (2015) sought to estimate the
power of studies of particular designs. Specifically, in between-subject
studies evaluated in these simulations women were either sampled
fromaphase estimated to consist of fertile days or froma phase estimat-
ed to consist of non-fertile days; in within-subject studies womenwere
assessed during both. The authors specifically sought to estimate the
statistical power of such studies. By contrast, we sought to estimate
the validity of methods that assign conception probabilities to women
(either by classifying women into fertile and non-fertile groups, or by
assigning quantitative values of conception probability) when women
are sampled randomly. Our simulations not only speak to validity.
They also speak to statistical power of studies that sample women ran-
domly from across the cycle and assign conception probability based on
counting methods, which has been the most common method used in
cycle studies to date (Gildersleeve et al., 2014a). Therefore, our simula-
tions, and their implications, apply to a broader range of study designs
and considerably more of the extant literature.

2. Methods

2.1. Generating a representative sample of cycle days

We created our simulation sample in 6 steps. See Supplemental On-
line Materials (SOM) for an expanded description.

1. A samplewith day of ovulation and current day of the cycle. First, we
created a sample with a representative distribution of days of
ovulationwithin a cycle (or, equivalently, follicular phase lengths,
as the follicular phase begins the first day of the cycle and ends on
the day of ovulation). Stirnemann et al. (2013) used ultrasound
fetal biometry to estimate the day of conception (number of
days following beginning of last menses to day of conception)
on a sample of nearly 6000 women. As they noted, conception
typically occurs within 12 hours of ovulation; hence, the distribu-
tion of days of conception should closely match that of days of
ovulation. We used an online graphical data extractor (http://
arohatgi.info/WebPlotDigitizer/) on Stirnemann et al.'s Fig. 1 to
obtain proportions of cycles in which conception occurred on a
given day. We then created 1000 cases that matched these pro-
portions. This sample of 1000 was multiplied 35-fold, with each
of the 35 sets given a current day of the cycle ranging from 1 to
35. Hence, our sample of 35,000 cycles had a distribution of
days of ovulation matching that of Stirnemann et al. and a uni-
form distribution of current day of the cycle, representing days
1 to 35.

2. Assumed distribution of luteal phase lengths. Several large-sample
studies have estimated the length of the luteal phase (days from
ovulation to beginning of next menses) to average 13–14 days
(Baird et al., 1995: 13.1; Cole et al., 2009: 13.2 days; Lenton
Please cite this article as: Gangestad, S.W., et al., How valid are assessmen
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et al., 1984: 14.1 days; Fehring et al., 2006: 12.4 days; sample
sizes range from 327–1060), with standard deviations of approx-
imately 2.0 days (Baird et al.: 2.2; Fehring et al.: 2.0; Cole et al.:
2.0; Lenton et al.: 1.4 with outlying values excluded). We created
a sample of luteal phase lengths approximating a normal distribu-
tion with mean 13.5 days and standard deviation of 2.0.

3. Assumed correlation between follicular and luteal phase lengths.
Across over 1000 cycles, Fehring et al. (2006) estimated a correla-
tion of− .323 between follicular and luteal phase lengths, consis-
tent with an estimate by Cole et al. (2009). We modeled a
correlation of− .3 by generating a normally distributed standard
randomvariable and creating aweighted sumof that variable and
z-scored follicular phase lengths, weights being √(1-.32) and .3,
respectively. We then transformed this sum to a variable with
mean 13.5 and standard deviation of 2.0 (above), and rounded
values to the nearest integer; this variable is luteal phase length.

4. Elimination of cases with cycle day exceeding cycle length. As
current day of the cycle cannot possibly exceed length of the
current cycle (i.e., follicular + luteal phase lengths), we eliminat-
ed from our data base all such impossible cases (19.5% of all
simulated cycles).

5. A second sample. To assess the impact of random variation in our
simulated sample, we created a second sample using precisely
the same procedures but generating a new random variable to
compute luteal phase lengths. Results for the two samples were
nearly identical: mean absolute difference in estimated validity
coefficients (expressed as r; see below) was .006. We report re-
sults for the two samples combined.

6. The fertile phase and estimated probabilistic conception probability.
Following Stirnemann et al. (2013), we defined the true fertile
window as beginning mid-way through the day five days prior
to the day of ovulation and ending mid-way through the day of
ovulation. Hence, we coded this variable for the 5 days prior to
the day of ovulation and the day of ovulation itself as .5, 1, 1, 1,
1, .5, respectively, and all other days as 0. Following Wilcox,
Weinberg, and Baird (1995), we also assigned continuous proba-
bilities of conception resulting from unprotected sex. See SOM.

Data were created and analyzed using SPSS 22.0.We generated
28,197 and 28,148 cases in the two samples, for a total combined sam-
ple of 56,345 cases. Validities of all methodswere assessed based on this
total combined sample. Data files are freely downloadable from http://
psych.unm.edu/people/directory-profiles/steven-gangestad.html.
ts of conception probability in ovulatory cycle research? Evaluations,
015), http://dx.doi.org/10.1016/j.evolhumbehav.2015.09.001
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2.2. Characteristics of the representative sample

To assess how well our sample represents real cycles, we examined
its features. As Table 1 shows, mean length of the follicular phase is
15.00 (SD=3.44). As outlined in Table 1, themean lengths of the follic-
ular phase, estimated from Stirnemann et al. (2013) (eliminating
lengths N 29 days), and the luteal phase in our target distribution are
nearly identical to our observed distribution. The correlation between
lengths of the follicular and luteal phases is − .317, close to our target
of − .3, and even closer to the value of − .323 reported by Fehring
et al. (2006). Cycle length, then, has a mean of 15.00 + 13.56, or
28.56, with a standard deviation of 3.39. Fehring et al.'s (2006) un-
weighted mean of five large studies is also 28.56 (s = 3.34). Fehring
et al. reported correlations between the length of the entire cycle and
length of the follicular and luteal phases as .829 and .255, respectively.
In our sample, these correlations are .825 and .276. In sum, our simulat-
ed sample almost perfectly matches real samples of cycles with respect
to the distribution of cycle lengths, follicular phase lengths, luteal phase
lengths, and their associations – precisely the features that affect the
distribution of fertile days within the cycle.

Table S1 (see SOM) compares the percentages of cases possessing
particular days of ovulation we targeted based on Stirnemann et al.
and the percentages of cases in our samplewith those days of ovulation.
Again, our sample closely matches our target. We therefore feel confi-
dent that our simulated cycles can accurately evaluate the validity of
conception probability measures.

2.3. The methods of estimated conception probability evaluated

We evaluated two sets of methods for estimating fertility status:
those based on (1) Wilcox et al. (2001) and on (2) Stirnemann et al.
(2013). Wilcox et al. (2001) estimated probabilities of conception fol-
lowing unprotected sex for each day of the cycle, using a sample of
696 cycles from 213women. These values were based on days of ovula-
tion estimated from daily patterns of urinary metabolites of estradiol
and progesterone, in conjunction with estimated probabilities of con-
ception for days relative to ovulation (Wilcox et al., 1995). Based on
their estimated distribution of days of ovulation and a presumed 5-
day fertile window (extending over 6 days, with half of the first day
and last day being within the window), Stirnemann et al. (2013) esti-
mated probability of being within the fertile window for each day of
the cycle. As the distribution of the fertile window in our sample is
based on Stirnemann et al.'swork, estimates of validitymight be slightly
biased in favor of Stirnemann et al.'s methods.

Within each of these two sets, we evaluated specific methods of es-
timating fertility within the cycle.

2.3.1. Continuous forward estimate of fertility
Wilcox et al. (2001; Table 1) and Stirnemann et al. (2013; Fig. 5) give

conception probability or probability of beingwithin the fertile window
for each day of the cycle. We extracted values from Stirnemann et al.'s
figure using http://arohatgi.info/WebPlotDigitizer/. See SOM for all
values and SPSS syntax.

2.3.2. Continuous backward estimate of fertility, actual cycle length
Backward estimates are based on day of the cycle in conjunction

with cycle length, assuming luteal phase length is nearly invariant. To
derive these estimates using continuous values, we first placed a
woman's current day of the cycle on a standard 29-day cycle based on
cycle length, then assigned probability values from Wilcox et al.
(2001) for regular cycles and Stirnemann et al. (2013) for all cycles.
Based on the modal luteal phase length reported by Baird et al., 1995),
we assumed a luteal phase length of 14 days. If a woman was within
14 days of the end of the cycle, then, her place on a standard 29-day
cycle would be 29 minus the number of days from the end of her
cycle. (For example, if she were on day 20 of a 31-day cycle, she
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would be placed at day 18 of a 29-day cycle – the same 11 days from
the end of her cycle.) If she were more than 14 days from the end of
her cycle, we estimated her comparable day of the cycle to be the day
proportionately at the same place within the follicular phase, rounded
to the nearest integer day. (For example, if she were on day 11 of a
31-day cycle – 65% of the way into her presumed follicular phase of
17 days – she would be placed at day 10 within a 29-day cycle, the
value closest to 65% of the way into a follicular phase of 15 days.)
When using Wilcox et al.'s (2001) estimates, we assigned a conception
probability using the values they reported for regular cycles (Table 1).
Stirnemann et al. (2013) did not report probabilities of being within
the fertile window for regular cycles; rather, they reported probabilities
for all cycles. We estimated probabilities for regular cycles from data
they present and found that they do not increase validity. Therefore,
we used the values they reported for all cycles. (See Gangestad et al.,
2007; Garver-Apgar, Gangestad, & Thornhill, 2008; Puts, 2006, for sim-
ilar procedures.) This backward estimate assumes that the length of
the cycle is known precisely and therefore can be used only when re-
searchers obtain a follow-up report from participants of onset of next
menses after assessment. (See SOM for SPSS syntax that computes
these continuous estimates).

2.3.3. Continuous backward estimate of fertility, reported typical
cycle length

Some researchers have computed backward estimates using
women's self-reported typical cycle length. These self-reports will not
perfectly match actual length of the current cycle because (1) women's
cycle lengths vary, and (2) women might not accurately report their
typical cycle length. Literatures speak to the impact of each source of
error. Cole et al. (2009) estimated that the between-woman individual
variance in cycle length is 5.2, while the within-woman variance is
2.8. By these estimates, 35% of the variance in cycle length is within-
woman. Jukic et al. (2008) and Small et al. (2007) examined associa-
tions between self-reported typical cycle length and observed mean
cycle length, and found correlations of only .45 and .50, respectively.
As imperfect measurement of actual mean cycle length may partly ex-
plain poor matching, wemodeled two different scenarios: an optimistic
one, which presumed a correlation of true mean cycle length and re-
ported mean cycle length of .7, and a pessimistic one, which presumed
this correlation to be .5.

To create measures of self-reported typical cycle length in our data,
then, we (a) constructed a measure of true mean cycle length by com-
puting a variable based on current cycle length but with 35% error
added in and with 35% less variance than current cycle length (SD =
2.73); (b) used this measure to create two self-reported typical cycle
length measures, one possessing a Pearson r of .7 with true mean
cycle length, the other possessing an r of .5with truemean cycle length.
Mean typical cycle length was set at 28.5, closely reflecting the actual
mean in the sample. Standard deviations in the reports matched that
in estimated true mean cycle length. Values were truncated at 22 and
35 (affecting b1% of all cases).

To estimate the probability of being within the fertile window using
a backward procedure based on self-reported typical cycle length, then,
we substituted self-reported cycle length for current cycle length in the
procedures we describe above.

2.3.4. Averages of forward and backward estimates
Both forward and backward estimates are subject to error, with

error in forward estimates resulting from variation in day of ovulation
and error in backward estimates resulting from departures from the as-
sumed 14-day luteal phase length and, for reported typical cycle
lengths, the imperfect association between reported typical cycle length
and current cycle length. Because errors are imperfectly correlated, an
average of the forward and backward estimates could in theory yield a
measure more valid than either one alone. Hence, we also evaluated
three such averages: the average of the forward estimate with,
ts of conception probability in ovulatory cycle research? Evaluations,
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separately, the backward estimates based on (1) current cycle length,
(2) self-reported typical cycle length with validity coefficient (r) of .7,
and (3) self-reported typical cycle length with validity coefficient of .5.

2.3.5. Discrete high-and low-fertility windows
Most studies to date have defined a discrete high-fertility window

based on either forward or backward procedures (see Gildersleeve
et al., 2014a). Size of the high-fertility window has typically varied
from 6 to 9 days, with the remaining days (or a subset of them, as we
discuss later) designated as low fertility. We constructed high-fertility
windows of all sizes within this range based on both forward and back-
ward estimates. Optimal windowswere identified by defining the high-
fertility window as the 6, 7, 8, or 9 days associatedwith the highest con-
ception probability or probability of falling within the fertile window.
For forward procedures, we identified optimal windows using both
Wilcox et al.'s (2001) and Stirnemann et al.'s (2013) conception proba-
bility estimates. For backward procedures, we confirmed that our win-
dows were optimal for each window size. Table 2 lists all high-fertility
windows we examined. In total, we examined 20 different measures
based on discrete windows: 2 (Wilcox et al. vs. Stirnemann et al.) × 4
(6, 7, 8, 9-day windows) = 8 forward windows; 4 (6, 7, 8, 9-day win-
dows) × 3 (known onset of nextmenses plus twomethods based on re-
ported typical cycle length, differing in assumed validity of reports) =
12 backward estimates.

2.3.6. Elimination of cases
With all methods, every case was given a conception probability

value, whether continuously or discretely distributed. Of course, re-
searchers can eliminate cases falling on days of the cycle on the fringes
of the fertile window, thereby more cleanly distinguishing high from
low fertility cases. With continuous measures, such a procedure is
akin to a post hoc extreme groups design. As Preacher, Rucker,
MacCallum, and Nicewander (2005) note, such procedures rarely in-
crease power, as loss of power due to reduced N offsets increases due
to enhanced validity of measurement. Moreover, elimination of data
raises suspicion, warranted or not, of post hoc data analytic decisions.
Accordingly, they firmly advise against this practice. In the discussion,
we address the question of whether elimination of days is advisable.

2.4. Anovulatory cycles

A small proportion of cycles are anovulatory, even among healthy
women who regularly cycle. One recent study found that, in
509 cycles of healthy, premenopausalwomen (mean age=27)without
diagnosedmenstrual or ovulatory disorders, approximately 8%were an-
ovulatory (as determined by daily assays of reproductive hormones;
Ahrens et al., 2014). Naturally, the presence of anovulatory cycles de-
creases the validity of countingmethods, as such a method will mistak-
enly judge certain days within anovulatory cycles to be fertile. To assess
the impact of anovulatory cycles, we randomly selected 8% of our sam-
ple and assigned these cases conception probability values of zero, no
matter what the day of the cycle.
Table 2
Discrete high fertility windows examined in our analyses

Forward Backward

Length (days) Wilcox et al. Stirnemann et al.

6 11–16 10–15 14–19
7 10–16 9–15 14–20
8 10–17 9–16 13–20
9 9–17 8–16 13–21

Notes. Forward windows are ranges of forward counting days. Backward windows are
ranges of reverse counting days. Ranges under “Wilcox et al.”maximize conception prob-
ability using daily values reported by Wilcox et al. (2001). Ranges under “Stirnemann
et al.” maximize conception probability using daily values reported by Stirnemann et al.
(2013).
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We note that undergraduate populations may have higher rates of
anovulatory cycles. Using a criterion recommended by Ellison, Lager,
and Caffee (1987); failure to reach 300 pmol/L of progesterone during
the luteal phase, Roney and Simmons (2013) classified 31% of cycles
as anovulatory. They noted that their criterion may be overly conserva-
tive andmisclassify some ovulatory cycles. Nonetheless, our simulations
may under represent anovulatory cycles in young college women.

Of course, hormonal variation, rather than ovulation per se, probably
gives rise to cycle shifts (e.g., Roney & Simmons, 2013). Anovulatory cy-
cles are characterized by substantially smaller changes in hormone
levels across the cycle, but not an absence of changes altogether
(e.g., Ellison et al., 1987). We present findings both taking into account
and not accounting for anovulatory cycles.

2.5. Reporting error

Forward estimation procedures assume that first day of last men-
struation is reported accurately. Wegienka and Baird (2005) assessed
the accuracy of women's retrospective reports. Most women (57%)
recalled a day that matched a prospective assessment. But nearly 20%
of women's reports were off by more than 3 days. As some error could
have been due to unclear instructions, our modeling of error was
more optimistic: 66% of women were assumed to report a day that ex-
actly agreed, with error of 1, 2, 3, 4, and 5 days constituting 16%, 8%,
5%, 3%, and 3% of the sample, respectively. Consistent with Wegienka
and Baird's (2005) findings, error in the simulated sample increased
with day of the cycle (N day 22: 50% spot-on vs. 39% in Wegienka &
Baird; b day 7: 85% spot-on vs. 68% inWegienka & Baird), and underes-
timation of time passed exceeded overestimation (21% vs. 14%, com-
pared to 25% and 19% in Wegienka & Baird.)

3. Results

3.1. Estimated validities of the measures

Analyses examining validity of our measures were straightforward:
Within the total sample of 56,345, we computed Pearson product–
moment correlations between estimated conception probability based
on possiblemethodswith two sets of values for “true” conception prob-
ability (continuous estimates of conception probability; estimates of
being in the high- vs. low-fertility window). For measures based on dis-
crete high fertilitywindows, these values are point-biserial correlations.
In short, we refer to these correlation coefficients as “validities.” In our
initial analyses, we assumed that every cycle is ovulatory, and reports
of cycle length are fully accurate; subsequently, we assessed the impact
of anovulatory cycles and reporting error.

Assigned or “true” conception probability, based on values from
Wilcox et al. (1995), covaried very highly with assigned state of falling
within the 5-day fertile window, r = .956. Validities estimated using
these two criteria, then, are very similar.

Full results are presented in Table 3. Validity coefficients average a
very modest .54 but vary substantially (.41–.70).

3.1.1. Estimates based on Wilcox et al. (2001) vs. Stirnemann et al. (2013)
Validities of estimates based on Wilcox et al. and Stirnemann et al.

are very similar, mean absolute difference in validity = .017. We see
no substantive or practical differences between these estimates of fertil-
ity status.

3.1.2. Continuous vs. discrete measures
Uniformly, continuous measures outperform comparable discrete

measures. For forward estimates and backward estimates based on re-
ported typical cycle length, the validities of continuous measures aver-
age .058 greater than discrete measures. Even when the precise cycle
length is known, continuous measures perform better (mean
difference = .042). Because luteal phase length is not a constant
ts of conception probability in ovulatory cycle research? Evaluations,
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Table 3
Validities of measures of conception risk/fertility status

Continuous Discrete windows

Single Average 6 7 8 9

Conception probability
Forward .521/.555 .432/.480 .480/.502 .465/.505 .493/.509
Backward – known .700/.678 .654/.655 .659 .671 .661 .650
backward – report .7 .567/.560 .570/.582 .472 .495 .502 .513
Backward – report .5 .531/.528 .550/.565 .424 .449 .457 .470

In fertile window
Forward .510/.551 .416/.473 .469/.500 .452/.499 .484/.506
Backward – known .704/.690 .651/.660 .657 .675 .658 .649
Backward – report .7 .564/.563 .562/.582 .463 .492 .494 .509
Backward – report .5 .527/.529 .546/.564 .417 .445 .450 .465

Notes. N = 56,345. Conception probability, in fertile window: two criterionmeasures. Forward: a forward estimate of conception risk; backward – known: a backward estimate based on
confirmed first day of next menses; backward – report .7: a backward estimate based on self-reported typical cycle length, with validity .7; backward – report .5: a backward estimate
based on self-reported typical cycle length, with validity .5. For continuous measures and forward windows, two estimates are reported, separated by a slash: ones based on Wilcox
et al. (2001) (before slash); ones based on Stirnemann et al. (2013) (after slash). 6, 7, 8, 9: Number of days in the high fertility window. Bold values: highest validities on row, within
Wilcox et al./Stirnemann et al. sets.
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14 days, a continuous measure captures the effects of luteal phase vari-
ation better than discrete windows.

3.1.3. Discrete high-and low-fertility windows
Though use of any discrete high-fertility window is a mistake, given

the better continuousmeasures available, one can nonetheless compare
performance acrosswindow sizes. Although one review of the literature
(Wood et al., 2014; see also Harris et al., 2014) claimed 6-day windows
to be more valid than longer windows, this claim is wrong: 6-day win-
dows perform poorly. Longer windows (8–9 days) outperform shorter
windows (6–7 days), likely because shorter ones often designate actual
high-fertility days as low fertility. An exception is a backward estimate
based on a confirmed length of the current cycle. This is understand-
able: Longer windows hedge bets on true day of ovulation, but a back-
ward count based on a known cycle length narrows the range of likely
true days of ovulation. Even in these instances, however, a 7–8 daywin-
dow is best.

One review of the literature (Wood et al., 2014; see also Harris et al.,
2014) claimed 6-day windows to be more valid than longer windows.
This claim is wrong: 6-day windows perform poorly.

In addition to thewindows listed in Table 2, we examined the valid-
ity of several other discrete windows represented in the literature. See
SOM, Table S2.

3.1.4. Averages vs. individual continuous measures
When length of the current cycle is precisely known, backward esti-

mates clearly outperform either forward estimates or averages of for-
ward and backward estimates. Indeed, in that circumstance, the
validity coefficient is ~ .70. But when reported typical cycle length is
used, the validity of forward-backward averages matches or exceeds
both forward and backward estimates. Precise validity of the self-
report (.7 vs. .5) has little impact: Validities for averages based on
such self-reports are ~ .57 and .55, respectively.

3.2. The impact of anovulatory cycles and reporting error

The impact of 8% anovulatory cycles can be summarized simply: No
matter what the countingmethod, validities are reduced by .02–.03, ap-
proximately 5%. For instance, the validity of a continuous backward
method based onWilcox et al.'s estimates falls from .70 to .67. Validities
of averages of continuous forward and backward estimates fall from
roughly .56 to .54, on average. See SOM, Table S3.

The reporting error wemodeled reduced validities by 5–6% on aver-
age. Backward estimates based on confirmed first day of next menses
are not affected by reporting error and hence are not included in this av-
erage. See SOM, Table S4.
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Jointly, then, anovulatory cycles and reporting error reduce validities
of any measure based on a forward estimate by ~10%, on average.

3.3. Power calculations

Choice of a measure has two major implications. First, relatively
valid measures lead one to be able to more accurately estimate the
true size of a correlation between conception probability and a variable
of interest. Second, relatively valid measures increase power to detect,
through traditional hypothesis testing, a true effect of conception prob-
ability on a psychological variable of interest (or, in Bayesian analysis,
find support for amodel claiming a true effect exists relative to one pos-
iting no effect). Suppose that there exists a true effect of falling within
the fertile window on a psychological state equal to Cohen's d of .5. Un-
less fertility status is perfectly measured, measurement error will atten-
uate that true effect; hence, one is tasked with detecting a manifest
effect smaller than .5. Naturally, greater measurement error attenuates
themanifest effect sizemore dramatically. Power is a function of the ef-
fect size to be detected and sample size. To achieve the same power to
detect an effect of interest using a measure of poorer validity compared
to one of superior validity, one must boost sample size.

We estimated power to detect true effect sizes (Cohen's d) ranging
from .4 (a low-medium effect) to .8 (large effect; Cohen, 1988) for mea-
sures with specific, targeted validities:

A validity of 1.0. Though not practically achievable, this value is an
ideal comparison.
A validity of .85. Daily LH tests in the presumed high-fertility phase
may yield validity of measurement of .8–.9 (see introduction). We
assume here a validity of .85.
A validity of .7. This is the highest estimated validity of any counting
methodwe examined: a continuous backward estimatewith follow-
up confirmation of the accurate next menstrual onset.
A validity of .55. This is the approximate validity of an average of con-
tinuous forward and backward estimates based on a self-report of
typical cycle length.
A validity of .43. This is a slightly optimistic estimate of the validity
(estimated at .41–.43) of a discrete forward estimate with a 6-day
window based on Wilcox et al. (2001).

3.3.1. Power: between-subject designs, representative sampling
We first consider statistical power in between-subject designs in

whichwomen are representatively sampled from the population of nor-
mally ovulatingwomen. In such samples, we expect that approximately
5 women for every 28.5 sampled are in the fertile phase (as 5 days are
fertile out of an average cycle of 28.5 days – 17.5%). Unequal
ts of conception probability in ovulatory cycle research? Evaluations,
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Table 5
Sample size necessary to achieve 80% and 70% power: within-subjects studies

Cohen's d

.5 .8

r across phases: .3 .5 .7 .3 .5 .7

1.0 47 34 22 20 15 12
37 27 17 16 12 8

.85 65 48 30 28 21 14
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representation of fertile and infertile women affects power; e.g., d of .5
and equal numbers of fertile and infertile women translate to r of .243
(roughly half of d), but representative sampling translates to r of .187
– nearly 25% smaller.

Table 4 reports sample sizes needed to achieve 80% power (desired)
and 70% power (moderate) for true d of .4, .5, .6, .7, and .8. Cohen's ds of
.5 and .8 are considered medium and large effect sizes, respectively. As
can be seen, evenwhen highly validmeasures of conception probability
are used, sample sizes exceeding 200 are needed to achieve 80% power
to detect a medium effect size. For example, a backward estimate based
on a precisely known date of next menstrual onset has validity of .7 but
requires a sample size of ~450 to achieve 80% power to detect amedium
effect. A forward estimate based on a discrete 6-day high-fertility win-
dow has validity of .43 but requires a sample size of 1200.

Table S5 lists power for d of .5 and .8 and sample sizes of 50, 100, and
200.Within this range, only sample sizes nearing 200 andusing concep-
tion probability measures with validity of at least .7 have reasonable
power, but only to detect large effect sizes. Even if validity is .7, power
to detect a true effect size of .5 is b50%. When typical day-of-cycle
based measures are used, power to detect medium effect sizes with
sample size 200 falls below 30%. Table S6 gives power estimates when
8% anovulatory cycles and reporting error are assumed.

Though most between-subject studies conducted to date have sam-
pled women representatively across the cycle, some researchers have
attempted to oversample women in the fertile phase by pre-screening
women. Naturally, for any given sample size power is improved in
such cases, though at the considerable cost of pre-screening many
women who do not end up in the sample. Improvement of power in
such instances depends on the extent to which the fertile phase is
oversampled, and the precise days of the cycle researchers target for
oversampling. Given that this particular kind of between-subject stud-
ies are relatively rare (Gildersleeve et al., 2014a), we do not estimate
power for such instances here. Using similar simulation procedures,
Gonzales and Ferrer (2015) provide power estimates for certain specific
instances and, like us, estimate power to be relatively low. (For example,
they report that a between-subjects study with N = 200 has approxi-
mately 20% power to detect a medium effect size.) By downloading
and running analyses on our simulation sample tailored to a particular
set of targeted days, researchers can estimate power for any specific
design.

3.4. Power: Within-subject designs

In within-subject designs, women are typically assessed twice in
their cycles: Once in the fertile phase and once in the nonfertile, luteal
Table 4
Sample size necessary to achieve 80% and 70% power: between-subjects studies with rep-
resentative sampling

Cohen's d

.4 .5 .6 .7 .8

Equivalent r .150 .187 .222 .257 .291
Validity of conception risk measure
1.0 344 222 156 116 90

271 175 123 92 71
.85 477 309 217 162 126

375 243 171 127 99
.70 705 456 321 239 187

554 359 252 189 147
.55 1143 740 521 389 302

898 581 410 306 239
.43 1872 1213 854 638 498

1469 952 671 501 391

Notes. Ns needed for 80% power given in the top row; Ns needed for 70% power given in
the bottom row (italicized). Cohen's d: true standardized difference between high fertility
and low fertilitymeans. Equivalent r: Value of r Cohen's d translates towith representative
sampling (5 of every 28.5women being in the fertile phase).Bolded values: Recommend-
ed sample size to achieve adequate power. Two-tailed tests assumed.
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phase. Power of a within-subject design is enhanced when individual
differences across women produce a positive correlation in responses
assessed across the fertile and luteal phases. We assessed power of
within-subject designs under assumptions of this correlation being .3,
.5, and .7.

Table 5 presents results. Naturally, one expects that within-subject
designs achieve adequate power with smaller N than a between-
subjects design. The differences here, however, are dramatic: Depend-
ing on the r across phases, 10% to 21% the sample size is needed relative
to a comparably powered between-subjects design. In our experience, a
moderate correlation across phases of .5 or more can typically be ex-
pected. In that case, required sample sizes to achieve power with the
two designs differ by a factor of ~6.

For instance, a within-subject design that assesses fertility status
with LH tests (assumed validity of .85) requires a sample size of just
under 50 to achieve 80% power to detect a d of .5. A comparable
between-subject design using LH sticks would require over 300 partic-
ipants. Comparable power in between-subjects designs using a back-
ward method with confirmed day of next menses requires close to
500 participants. A between-subjects design using a forward-
backward average based on self-reported typical cycle length requires
close to 750 participants.

Validities listed– e.g., .7, .55, .43 – correspond to validities for designs
that sample women twice during the cycle on representative days, not
targeted days, using backward estimate with next menstruation con-
firmed, average of forward and backward using typical cycle length,
and forward estimate using discrete windows, respectively. Many
within-subject studies, however, target specific high fertility and low
fertility dates. Such designs afford greater power, though howmuch de-
pends on precisely how days were targeted. We estimate that designs
that assess women twice during a cycle during targeted high and low
fertility windows, based on counting methods, typically achieve
validity ~ .1 greater than that achieved with representative sampling.
Hence, for instance, a study that used a backward design with onset of
next menstruation confirmed would typically have a validity of
51 38 24 22 17 12
.70 96 71 45 42 32 22

76 56 36 33 25 17
.55 157 116 74 69 52 36

123 91 58 54 41 29
.43 258 190 122 113 86 60

202 149 96 89 68 47

Notes. Left-hand column: validity of measurement of conception risk. Ns needed for 80%
power given in the top row;Ns needed for 70% power given in the bottom row (italicized).
Cohen's d: true standardized difference between high fertility and low fertility means.
Bolded values: Recommended sample size to achieve adequate power. Two-tailed tests
assumed.
Validities listed – e.g., .7, .55, .43 – correspond to validities for designs that samplewomen
twice during the cycle on representative days, not targeted days, using backward estimate
with next menstruation confirmed, average of forward and backward using typical cycle
length, and forward estimate using discrete windows. Manywithin-subject studies, how-
ever, target specific high fertility and low fertility dates. Suchdesigns afford greater power,
though how much depends on precisely how days were targeted. We estimate that de-
signs that assess women twice during a cycle during targeted high and low fertility win-
dows, based on counting methods, typically achieve validity ~ .1 greater than that
achieved with representative sampling. Hence, for instance, a study that used a backward
designwith onset of next menstruation confirmedwould typically have a validity of mea-
surement of .7. Yet if high fertility and low fertility days are targeted, validity might in-
crease to .8. 80% power to detect an effect size of .5 then might be achieved with a
sample size of about 55, as opposed to 71. Readers should treat these values as guidelines.
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measurement of .7. Yet if high fertility and low fertility days are
targeted, validity might increase to .8. In such a case, 80% power to de-
tect an effect size of .5 would be achieved with a sample size of about
55, as opposed to 71. Readers should treat values listed in Table 5 as
guidelines.

Table S7 presents power ofwithin-subject design studies usingmea-
sures of varying validity, with sample sizes of 25, 50, and 100 and as-
suming a correlation of .5 across phases for the dependent measure.
Table S8 presents power of within-subject design studies assuming 8%
ovulatory cycles and reporting error.

4. Discussion

We aimed to evaluate the validities of various counting methods to
assess conception probability. To do so, we simulated a large sample
of cycles that demonstrably possess the distributional characteristics
of real cycles. Our evaluations yield several broad observations. First,
the validities of counting methods are modest, overall. Their median is
approximately .5. Virtually all fall short of .6, even ones that account
for between-women variation in typical cycle length. Second, to achieve
reasonable statistical power, studies using most counting methods re-
quire extremely large sample sizes (see also Gonzales & Ferrer, 2015).
To be able to detect a medium effect size of .5 with 80% power, a
between-subjects study that uses a measure with validity near the me-
dian (.5) demands a sample size of about 900 or over 1000when anovu-
latory cycles and reporting errors are present.

These findings have important implications. First, they inspire a set
of recommendations going forward. Second, they inform interpreta-
tions of the current literature.

4.1. Recommendations for future research

Our findings yield clear recommendations for future research exam-
ining shifts across the cycle.

4.1.1. Recommendation 1: a within-subject design should generally be the
design of choice

Between-subject studies of cycle effects require very large sample
sizes to achieve acceptable levels of statistical power. Even if the most
valid counting method is used to measure conception probability, 80%
power to detect a medium effect size requires a sample size nearing
500 – and that method requires a follow-up confirmation of first day
of next menstruation. The best method based on a single session – an
average of continuous forward and backward estimates – demands a
sample size exceeding 700. By contrast, a within-subject design can
achieve comparable power with a sample size of 50–80. We suspect
that researchers will typically findwithin-subject studies to bemore ef-
ficient. Based on evaluations of particular kinds of between-subject de-
signs, Gonzales and Ferrer (2015) offered a similar recommendation.

One notable exception may be when women are recruited to com-
plete questionnaires online. Particularly when researchers wish to ac-
cess a non-college population fairly cheaply or avoid the potential
problem of sensitizing women to researchers' interest in cycle shifts,
between-subject studies with a large N might be reasonable. However,
between-subject studieswith anN less than 500 cannot be recommend-
ed; most methods call for N N 700. Researchers opting for these designs
should interpret manifest effect sizes with caution. Relatively low
validities of thesemethods for determining effects of fertilitywill reduce
estimates of effect sizes, on average, by about half relative to the ideal of
a validity of 1.0.

Naturally, the potential weaknesses of within-subject designs
should also be kept in mind. If presented with a stimulus two or more
times, individuals may recall their previous responses and, in an effort
to appear consistent, may give the same response. Accordingly, in one
study researchers instructed participants to “answer as you feel now,
which could be different than how you usually feel” (Gangestad,
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Thornhill, & Garver-Apgar, 2010). Cantú et al. (2014) created two differ-
ent stimulus sets, and each woman responded to each one just once –
one during her high fertility session and the other during her low fertil-
ity session (with high and low fertility stimuli counterbalanced across
women). Researchers should implement procedures that minimize
carry-over effects in within-subject designs when possible.

4.1.2. Recommendation 2: in within-subject studies, detection of LH surges
and a continuous backward estimate with confirmed onset of next menses
are methods of choice

Within-subject designs are best if they incorporate a highly valid
means of assessing the fertile phase. Two methods yield 80% power to
detect medium effect sizes with N b 100: detection of LH surge and a
backward estimate with confirmed onset of next menses. We recom-
mend sample sizes of 50 + and 80+, respectively (see Tables 5, S7,
and S8). Stunningly, within-subject studies with these sample sizes
can be as informative as between-subject studies of 1000+ (specifical-
ly, if the correlation between the dependent variable assessed at low
fertility and high fertility is .5 or greater).

Researchers will not detect LH surges for some women recruited for
participation – typically, up to one third of the recruited sample
(e.g., Gangestad et al., 2005; Larson et al., 2013). Some of these
women are precisely those one wishes to exclude, as their current
cycle is anovulatory or irregular, with day of ovulation not well predict-
ed by a countingmethod. Nonetheless, if researchers target a final sam-
ple size of 50women, theymight need to recruit 75women, close to the
same number required for a backward count method with confirmed
onset of next menses (with 10–15% attrition due to lack of follow-up;
e.g., Larson et al., 2013). Perhaps the primary trade-off dictating choice
between these two methods, then, is the benefit of increased certainty
of confirmed ovulation with LH sticks and the cost in money, time,
and effort that LH surge detection entails. If taken for 5 consecutive
days in the presumed high-fertility window, LH sticks typically
run b $10 per participant.

4.1.3. Recommendation 3: assay reproductive hormones instead
As ovulatory cycle shifts likely arise as a function of changing hor-

monal levels, studies that examine covariation of estradiol, progester-
one, and testosterone levels with variables of interest across time are
desired (e.g., Grillot, Simmons, Lukaszewski, & Roney, 2014; Puts et al.,
2013; Welling et al., 2007). They do not require researchers to assess
timing of ovulation per se. We recommend this form of study indepen-
dent of the validity of conception probability measures (as specific hor-
mones may have different effects; e.g., DeBruine, Jones, & Perrett, 2005;
Jones et al., 2005) but recognize that they are costly. Given low validity
of most countingmethods, however, some researchersmight find these
costs worth their expense. Once again, within-subject studies are most
powerful. Because hormonal effects are likely a function of both hor-
mone levels and tissue-specific receptor density (for which there
could be meaningful individual differences), researchers may be inter-
ested in examining bothwithin-woman and between-woman hormon-
al correlates (see Roney & Simmons, 2013, on potential time-lagged
correlation). If researchers sample hormones every other day or more
frequently, they can also identify the timing of ovulation within the
study (see, e.g., Roney & Simmons, 2013; see also Puts et al., 2013).

4.1.4. Exclusion of days and loss of participants
One research strategy is to collect data on a large sample of women

and then remove participants whose sessions do not, with at least mod-
est probability, fall into the fertile and nonfertile phases. Classification is
relatively accurate in the resulting sample. Hence, for instance, one can
classify the 5 days running from 10–14 (those with conception
probability N .07; Wilcox et al., 2001) as “fertile” and the days 1–7 and
21 and greater (those with conception probability b .02; Wilcox et al.,
2001) as “non-fertile,” leaving the 8 days from 8–10 and 16–20 unclas-
sified and therefore unanalyzed. Whereas a forward 6-day window
ts of conception probability in ovulatory cycle research? Evaluations,
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based onWilcox et al. has a validity of .43, this classification variable has
a validity of .60.

But will this approach increase power? No. The benefits of enhanced
validity of measurement are offset by the reduced sample size. For ex-
ample, with validity of .60, the 5-day discrete fertile window above
yields 80% power to detect an effect size of d = .5 with a sample of
622. However, it eliminates, on average, 29% of a sample. Therefore, to
achieve a final sample size of 622, one should run 860 women. Averag-
ing forward and backward continuous estimates based on typical cycle
length yields 80% power with740 women.

Trimming a sample has other costs, too: it eliminates potentially in-
formative data and raises suspicions of post hoc data analytic decisions
(e.g., see Gelman & Loken, 2014). Just as Preacher et al. (2005) do
not recommend ad hoc extreme group selection, we do not recom-
mend trimming a sample to more cleanly define high- and low-
fertility groups.

Rather than trimming a sample, researchers can oversample women
in the fertile phase of the cycle by using a pre-screening instrument.
Naturally, pre-screening to target specific days of the cycle has effects
on power similar to the effect of trimming a sample. Yet Gonzales and
Ferrer (2015) estimated that large sample size (N200) is typically neces-
sary even when researchers sample just two sets of days in a between-
subject design: A 1–6 day high fertility window and a low fertility win-
dow during the luteal phase.

4.2. Evaluations of the existing research findings: statistical power and ef-
fect size estimation

Potentially, our findings have profound implications for interpreting
the extant literature on ovulatory cycle shifts (see also Gonzales &
Ferrer, 2015). As noted earlier, findings are variable – e.g., 40% of
Gildersleeve et al.'s (2014a) subsample of 42 studies targeting core
mate preference shifts produced significant effects. As some of these
studies yielded mixed findings – some significant, others not - effects
of interest were detected at a rate closer to 30%. But as also noted, p-
curves of significant effects are robustly right-skewed, with a large pro-
portion of them being b .01. A p-curve's right skew is purportedly a sig-
nature of real non-zero effects (Simonsohn et al., 2014 - though we
acknowledge that p-curve analysis is a relatively new technique and re-
quires additional evaluation). Thus, while at least some findings may
well reflect true effects, significant effects are not detected inmost stud-
ies. What explains this pattern?

Statistical power plays a role. In 100 exact replicates of a study, each
with precisely 30% power to detect a true effect, 30% will, on average,
detect the effect. The same is true of a set of studies of varying sample
sizes assessing effects of heterogeneous size, with a mean of 30%
power. The p-curves Gildersleeve et al. (2014b) presented yield esti-
mates of mean power in the studies entered into it. The pattern of ob-
served p-values closely follows the theoretical curve expected if
power is 33%. (A larger sample of effects yielded the same estimate;
Gangestad, Grebe, Gildersleeve & Haselton, unpublishEd.) Hence,
power roughly matches the rate of positive effects observed in
Gildersleeve et al.'s (2014a) narrow sample.

As noted above, power, in turn, is a function of effect size and sample
size. So why is power poor – because true effects are exceedingly weak
or because N is insufficient to detect meaningful true effect sizes? Here,
our findings are pertinent: In light of the weak validity of counting
methods for the assessment of conception probability, the sample size
of most studies in the literature may possess woefully inadequate
power to detect even medium to large true effect sizes.

Though a review of past findings is beyond the scope of this paper,
we use the Gildersleeve et al. (2014a)meta-analysis sample to illustrate
this point. Of the 42 studies in the “narrow” sample, 24 and 18 studies
implemented between-subjects andwithin-subject designs, respective-
ly. Just 3 of 42 studies assessed LH, and 4 used a backwardmethod with
confirmed next menstrual onset. Of the remaining studies, about half
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(18) exclusively relied on a forward counting method, and the rest
(17) used backward counting or a mixture of methods. At the median,
then, conception probability estimations likely had validity ~ .50. The
median sample sizes were 118 and 29for between- and within-
subjects designs, respectively. Given validity of .50 and these sample
sizes, power to detect a medium effect size of .5 would be 17% and
24%, respectively, which yields a weighted average of 20%. Power to de-
tect a large effect size of .8 would be 35% and 41%, which yields a
weighted average of 37%. It is hardly surprising, then, that fewer than
half of these studies produced significant effects, even if true effects
are, on average, of medium or large size.

Of course, some studies had even weaker power. For instance, Rupp
et al.'s (2009) between-subject study of 13 women, using a continuous
forward estimate (estimated validity= .52), had 5% power to detect a d
of .5. More surprisingly, some large studies yielded stunningly low
power too. Harris's (2011) study of 258 women's fertility status using
a discrete forward estimate of 8 days (days 6–14; estimated
validity = .43), for instance, had an astonishingly small 25% power to
detect a d of .5.

Naturally, if the proportion of effects in these studies that were sig-
nificant slightly exceeds their median power to detect an effect size of
.5, then one might also expect an average effect size of about .5.
Gildersleeve et al. (2014a, 2014b) estimated mean effect sizes of .26
and .20 for effects on preferences in short-term and unspecified mating
contexts, while their p-curve yielded an estimate of .30. A mean ob-
served effect size of ~ .25 may seem inconsistent with true effect size
of ~ .5. Yet a true effect size of .5 means that true high and low fertility
groupmeans differ by .5 of a standard deviation. Once again,whenmea-
surement of conception probability is poor,manifest effect size fallswell
short of.5. Specifically, if validity of measurement is .5 and true effect
size is .5, manifest effect size is expected to be .24– close to values
Gildersleeve et al. (2014a, 2014b) report. Hence, a true mean effect
size of .5 is consistent with findings to date in light of low validity of
methods used to assess conception probability.

To propose that low power possibly explains, in part, the mixed na-
ture of results in studies to date is not to argue that every preference
shift examined to date is real. Indeed, some recent studies that have
failed to find cycle shifts have had considerable power. Zietsch, Lee,
Sherlock, and Jern (2015) and Munoz-Reyes et al. (2014), for instance,
examined the association between fertility status and preference for fa-
cial masculinity in sample sizes close to 600 and 500, respectively. They
should have had 60–70% power to detect medium effects (see Table 4),
but neither study detected an effect, with mean effect size close to zero.
As other recent studies examining cycle shifts in other preferences have
found positive effects (e.g., Cantú et al., 2014; Giebel, Weierstall,
Schauer, & Elbert, 2013), we suspect that another reason for mixed re-
sults in this area is heterogeneity of true effects across different kinds
of preferences (see Gangestad et al., unpublished). Whereas some pref-
erence shiftsmay be robust and substantial, othersmay be negligible. To
identify which effects are robust, additional, appropriately powered
studies are needed.
4.3. Summary and conclusions

Psychological effects of the ovulatory cycle have garnered increas-
ingly broad interest in the evolutionary and social sciences, spurring
many dozens of studies and considerable controversy over their robust-
ness. An unusual feature of this literature is the exceptionally broad di-
versity of methods used to assess the key variable in question – fertility
within the cycle. We sought to empirically estimate validities of these
methods using a large set of simulated cycles whose distributional char-
acteristics closely match those of real cycles. Results were striking, and
yield two outcomes: (1) a set of recommendations for researchers and
(2) important implications for understanding the true magnitude of
cycle shift phenomena.
ts of conception probability in ovulatory cycle research? Evaluations,
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If researchers adopt the methodological standards we suggest, sev-
eral welcome advances should follow. First, by following these stan-
dards, researchers will help to assuage concerns that methodological
flexibility has produced false positives in an absence of true cycle shifts.
Second, more uniform standards will allow for comparison across stud-
ies of psychological variables of interest, identifying where cycle shifts
are present and absent. Third, if our analysis of the extant literature in
light of low validity is correct, higher validity methods are likely to re-
veal cycle shifts considerably larger andmore robust than previous esti-
mates. If such findings indeed emerge as methods improve, they will
shed light on a potentially important role for fertility in regulating
human social behavior, paralleling widely established patterns in our
nonhuman cousins.
Supplementary Materials

Supplementary methods, results, and documentation to this article
can be found online at http://dx.doi.org/10.1016/j.evolhumbehav.
2015.09.001.
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