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The utility of mathematical constructs in building archaeological theory

INTRODUCTION1

In his book, Analytical Archaeology, Clarke (1968:512-513) noted three ways in which
mathematical concepts are relevant to what he calls archaeological ideology:
"(i) The need for entitation and quantification ... using ... descriptive statistics";
"(ii) The need to handle relationship concepts ... using analytical inductive statistics";
"(iii) The need to handle the regularities in complex data in terms of isomorphic systems of

symbols arranged in axiomatic schemes, models, or calculi"

A similar theme was iterated by Cowgill (1986:369) in a review article titled. Archaeological
Applications of Mathematical and Formal Methods. There he referred to three broad categories
comprised of "archaeological observations, analytical methods, and sociocultural theor", but then
observed that although "some theory is expressed directly in mathematical terms ... the vast majority
of archaeological uses of mathematical and formal techniques pertain to the domain of analytical
methods or to the design of data collection". And in a recent text, Anthropological Archaeology,
Gibbon (1984:383), though espousing the value of formal and axiomatically expressed theory in
archaeological reasoning, bluntly commented that "No theory within archaeology has ever been
formalized". Diametrically opposed conclusions can be drawn from these comments:

(1) the lack of formalized theory is indicative of the immaturity of archaeology as a
science, or

(2) formalized theory is largely irrelevant to the development of archaeological theory.

The intent in this review is to show that lack of substantive, axiomatic-like theories in
archaeology is neither inherent to the discipline, nor to the capabilities of the discipline's practitioners,
nor to the alleged irrelevancy of axiomatically framed arguments for an archaeologically based theory
(Salmon 1982). Rather, mathematically based techniques in the form of statistical methods and
modeling have already been well-established as an essential part of archaeological data analysis (Read
1989). What is lacking, though, is application of mathematical formalism to the theoretical issues of
archaeology, despite recognition of the value of axiomatically or formally expressed theory as shown
in the above quotes. I suggest that the disparity between (1) the acceptance of statistical methods and
(2) the lack of application of mathematical formalism stems from inadequate understanding of the
way mathematics provides not only a language for the expression of relationships, but also a means
for reasoning about their consequences, hence a language for extending archaeological reasoning.

To develop this argument, I will first consider the nature of mathematics and its several roles
when serving as a language and conceptual system for expressing relationships and processes
responsible for the structure found in data. Then I will examine several published applications of
mathematical formalism directed towards the understanding of processes.

The first topic will make a fundamental distinction between mathematical methods used to
express idealized patterns surmised from data and mathematical formalism used to
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represent process as the producer of pattern. The argument will be guided both by the philosopher C.
Peirce's view of mathematics as a system for reasoning about what must be true in a hypothetical
state of affairs (Peirce 1936), and by the way reasoning enters into a schema for scientific
argumentation used by the philosopher Suppe (1972) in his trenchant critique of the logical
positivist's view of scientific, explanatory arguments.

The second topic will consider examples -- information diffusion, dynamical systems,
Catastrophe 'theory, linear programming, and marginal cost analysis -- of applications of
mathematical formalism to the modeling of process.2 These examples will highlight the restricted
sense in which the reasoning power of mathematics has been brought to bear on the deeper,
substantive issues of archaeology, particularly those relating to the formation, evolution and change
of societal structures and systems. I will also suggest that too much reliance on assumed or claimed
behavioral regularities, such as rationality, as the basis for constructing theories fail to take adequately
into account the effects on behavior of social context (Keene 1985) and of the meanings provided by
a culturally defined "reality".

Mathematical formalism, then, provides the means to express hypothesized processes and
relationships in a manner that allows for the deduction of their implications for behavior viewed as
the source for the empirical patterns distinguished and isolated by the archaeologist. As it is
increasingly perceived that the logic of archaeological arguments can be expressed, developed and
scrutinized through mathematics taken in Peirce's sense as a system for reasoning with schemata,
then the foundation for Clarke's (1968) vision of an analytical archaeology will be set in place.

PART I: MATHEMATICS AS A SYSTEM FOR REASONING

AXIOMATIC REASONING

Both directly and indirectly, archaeologists have made extensive use of ideas and methods in
applications that derive from mathematical theory. These applications have run the gamut of
statistical methods and are almost as varied in kind as is their quality (see critiques by Thomas 1978;
Clark 1982; Scheps 1982). The aim in this part, however, is not to criticize the details of specific
applications but to stand back and to consider what constitutes mathematical thinking and how this
can relate to archeological reasoning. Paradoxically, the relationship is not seen easily in these
applications.

In applications, one is typically concerned with developing or applying a model through using a
mathematical idiom as a means for expressing relationships thought to characterize the data in
question. In contrast, mathematical thinking is concerned with the conceptual system for which the
model is to be an instantiation. And while much of the mathematics that has been applied in
archaeology and the other social sciences has to do with quantities, quantity, per se, has little to do
with mathematics. Rather, as the philosopher Charles Peirce (1936) noted, "Mathematics is the study
of what is true of hypothetical states of things" (p. 1775), based upon "reasoning with specially
constructed schemata" (p. 1777), characterized by "the extraordinary use it makes of abstractions" (p.
1777) and "can have no success where it cannot generalize" (p. 1778).

The notion of mathematics as a means to draw out what must be true in a hypothetical system
through using and manipulating symbols to convey and represent abstract concepts and properties
has been most extensively developed in the axiomatic method. The general aim of the axiomatic
method is to determine the properties logically entailed by a set of axioms, primitive terms, and
definitions. While one might appeal to real-world experience for motivation of one's choice of
primitives, axioms, and initial definitions, the
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connection with the real-world is neither necessary nor a criterion for evaluation of an axiomatic
system.

The power of the axiomatic method can be seen through the role it has played in establishing a
foundation for an extraordinary reformulation of mathematics by members of the so-called Bourbaki
School of French mathematicians who view all of mathematics as a hierarchy of axiomatically
defined structures (Kothe and Ballier 1985:506). The axiomatic method begins with a set of primitive
terms and/or symbols whose meaning is external to the structure being defined, and a set of axioms
that define relationships amongst the primitives. The axioms are taken as true and then the logically
necessary conceptual structure is developed by determining other, conditionally true statements, or
theorems and propositions, entailed by the axioms. New concepts are introduced and defined using
only the primitives, axioms, and derived theorems and propositions for the terms and relationships
which appear in the definitions.

The end result is a structure of relationships amongst symbols and primitive terms whose
meaning is to be found in the properties of the abstract system so constructed, not in its relationship,
if any, to real world phenomena. It can be likened to a cultural construct in the sense Leslie White
has used this notion for a symbol system, but differs from more familiar cultural constructs through
explicit identification of the symbolic foundation upon which it is constructed and verified. In an
axiomatic system, a clear separation is made between meaning induced through the properties of the
abstract system, and meaning as derived through implementation.

A classic example of an axiomatic system is provided by the axiomatization that was made of
arithmetic in the 1800's by the Italian mathematician, Peano. The axiomatization is based on a series
of axioms abstracted from the properties of the counting, or natural, numbers, i.e., the numbers 1, 2,
3, .… The primitives, in addition to standard mathematical symbols, are the terns 'number' and
'successor' and the symbol ' 1'. The axioms are:

(1) there is a number, called 1;
(2) to every number, n, there corresponds a unique number, n', called its successor,3
(3) 1 is not the successor of any number,
(4) if the numbers n and m have the property that n = m, then the successor numbers, n'

and m', respectively, have the property that n' = m'; and
(5) if P is a proposition about numbers where P is true for the number 1, and, whenever

P is true for the number n it is also the case that P is true for the successor number
n', then P is true for every number m (Induction Axiom).

From these axioms may be defined, and then proved to be unique, the notion of addition and
multiplication of the natural numbers. From addition and multiplication of the natural numbers may
be defined and derived the complete system of real and complex numbers (see, for example, Pickers
and Gorke 1986), the foundation for the branch of mathematics known as analysis, and through
analysis the basis of mathematical models using relationships of measures of quantity, the latter being
the aspect of mathematics commonly found in applications.

We see in this hierarchy the paradox mentioned above. The aspect of mathematics which has
the greatest immediate importance for the archaeologist in mathematical applications, namely
methods for developing and expressing models based on measurement of quantities, is not the
foundation for mathematical thinking, whereas what has greatest importance in mathematical
reasoning, namely the development of a -- conceptual -- system from a postulated set of axiomatic
relationships, has had the least importance to the archaeologist. Nonetheless, the axiomatic method
of reasoning can provide a model for the kind of reasoning that can be developed through formally
expressed archaeological theory.

Elsewhere (Read 1978), I have discussed the potential of using the axiomatic method as a
guide for formally expressing concepts used in archeological arguments. This dis-
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cussion was criticized by Salmon (1982) for advocating a method which, supposedly, is inappropriate
for archaeology. Her discussion, however, misconstrued the intent of my example which was to take
seriously the assertion of the "new archaeology" that theory, in the sense of the hard sciences, can
and should be developed within archaeology, and to examine how one might go about developing an
axiomatically expressed theory based on concepts relevant to archaeology. A more useful criticism
would have been to take up the question of whether or not the domain identified by many
archaeologists as the focus for theorizing, namely regularities in behavior as inferred from
archaeological data, can be axiomatized effectively.

The problem arising with axiomatization is not whether archaeologists have developed theory
re-castable in an axiomatic fashion -- for one can develop theory and its axiomatic expression in
roughly parallel fashion as was done, for example, with transformational grammars -- but whether
there are principles or relationships suitable for restatement as axioms for an axiomatic construction.
By this I mean that a particular axiomatic system can be no better than the axioms upon which it is
founded. because it is fundamentally a means to carry out the logic entailed by the axioms. The
axiomatization of arithmetic established that, while arithmetic developed historically out of
experiences with quantities in the real world, the properties of arithmetic as a system of thought are
not merely a symbolic codification of these experiences but are based on an abstraction that
supersedes them.

The basic abstraction has to do with the notion that the process of going from a quantity to a
successor quantity can be extended indefinitely, regardless of whether or not there are empirical sets
corresponding to these quantities. A counting system such as 'one, two, three, many' -- or its modern
counterpart, 'one, two, three, ..., infinity', where 'infinity' has the folk meaning of an extraordinarily
large number -- is consistent with viewing sets of objects as having quantities, but not with
arithmetic. In arithmetic, there is necessarily a successor to the number 'two', whether or not it is
named or has ever been encountered; that successor has a successor and so on without end,
according to Axiom 1. The indefinite extension of the counting numbers does not come directly
from experience since all experience is finite in its extent, but as an abstraction from experience as
expressed in Axiom 1.

Arithmetic, as a conceptual system, thus transcends experiences derived from dealing with
quantities through being built upon, and internally consistent with, its founding concepts or axioms.
In Peirce's terms, it is an assertion about a hypothetical state of affairs, namely that there are things
called numbers and that every number has associated with it another number called its successor,
with the structure of what we call arithmetic being the property such a system must inevitably have.
The inevitableness is both the strength and weakness in the application of the axiomatic method. It is
a strength because it establishes what properties are explainable as aspects of the system, and what
properties require explanation as defining the system, hence the axiomatic formulation is informative
of what properties are accounted for by the axioms when identification is made with real world
phenomena.

The abstract, axiomatic system is linked to the real world through identification of the terms of
the axiomatic system with real world properties. Arithmetic works in the real world because our
empirical notion of quantity in the sense of the number of objects in a collection of objects has
properties isomorphic to the primitive notions and axioms of arithmetic taken as a conceptual
system. Thus, the idea of '1' corresponds to the empirical observation that there are individuated
'things'; a 'successor quantity' is expressed by the idea that the quantity of objects in a collection can
be changed through augmenting the collection with another object of the same kind; a beginning
'number' by the fact that quantities begin with a collection having at least a single instance of an
object and this collection is not obtainable by augmenting any other collection of objects, etc. (Read
1987). Through this identification of axioms with real world experience we create the
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illusion that arithmetic is coterminous with empirical reality rather than seeing it for what it is, an
abstracted, conceptual structure made isomorphic with real world experiences through identification
of the abstract notion of number with the experiential notion of quantity.

The latter is also the weakness of axiomatic systems. While axiomatic systems are relatively easy
to formulate as purely mental constructs, formulating systems which will have broad ranging, useful
isomorphism with real world relationships is more problematic. One domain where there has been
notable success is physics.

In physics the degree of identity between the formal construction and the properties of the topic
domain, namely the properties of the physical universe, has been remarkable. As the physicist Hertz
commented "Within our own minds we create images or symbols of the external objects, and we
construct them in such a way that the logically necessary consequences of the images are again the
images of the physically necessary consequences of the objects" (1894; quoted in Hermes and
Markwald 1986:6). This identity between the properties of the physical world and mathematical
constructs has led to a view of mathematics not as a tool for use in investigation of properties of the
universe, but as the ultimate expression of those properties: "mathematics remains the method par
excellence for the investigation, representation, and mastery of nature. In some domains it is all we
have; if it is not reality itself, it is the closest to reality we can get" (Kline 1985:227). The connection
between mathematical formulation and physical property has been seen as bordering on the
miraculous: "The miracle of the appropriateness of the language of mathematics for the formulation of
the laws of physics is a wonderful gift we neither understand nor deserve" (Wigner 1960, emphasis
added).

That mathematics should have this relationship to theories of the universe neither stems from the
maturity nor the hardness of physics as a science, but from the nature of the physical universe. It is as
if the physical universe is the working out of fundamental principles or laws, and what we express
through mathematics are the properties of the structure entailed by these principles. In physics,
mathematics is no longer the codification and symbolic expression of properties and relationships
found by other means, but the source for finding these properties and relationships. It has become the
means for reasoning about the physical universe through appropriate symbolic schemata, as Peirce
characterized the nature of mathematics. It is here that the power of mathematics comes to the fore,
not in the modeling of relationships already determined, but in providing the schema through which
the logic of relationships can be drawn out and explored. It is this reasoning aspect of mathematics, I
suggest, that has the greatest potential for aiding in the development of substantive theory relevant to
the topic domain of archaeologists.

SCHEMATA FOR RELATING DATA, MODEL AND THEORY

In his critique of the logical positivist's framework, or "Received View", for explanatory
arguments, the philosopher Suppe (1972) noted that above and beyond any specific criticism of the
adequacy of the Received View was its failure to account for what scientists actually do. The Received
View of scientific explanation is based on an observational and a theoretical vocabulary that implied a
direct connection between observation and theory, a connection at odds with scientific
argumentation. Suppe noted that minimally an additional step wherein one goes from data to an
idealized representation of data in the form of a model, and from a model to a theory must be part of
any account of an explanatory argument. And it is quite clear from even a superficial perusal of the
archaeological literature that models and their construction play a central, intermediary role in
developing arguments that attempt to grapple with the complexities of explanatory reasoning.
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Theory

ModelT ModelD

Figure 1. A schematic diagram showing the rela-
tionships among theory, models and data..

Figure 2. A linear regression model as a prototypic form
for the expression of a ModelD.

Suppe's argument needs to be extended, for it is also evident that models play at least two distinct
roles in these arguments, and separation of these two senses will clarify some of the issues about
relating data to theory, and mathematical reasoning to archaeological theory. Figure 1 presents a
schema which distinguishes two usages of models. One usage, labelled ModelD; incorporates Suppe's
idea of a model serving as an idealized representation of concrete data. The second usage, labelled
ModelT, is the notion of a model as a more concrete representation of a theory, much in the sense of
Nagel's (1961) discussion of a model. The argument being made here is that neither ModelD nor
ModelT, is the correct usage. Both usages are part of scientific argumentation, with emphasis
sometimes on the first kind of model, other times on the second kind. The connection between data
and theory is through correspondence between ModelD and ModelT, in the following sense.

When examining some corpus of data, models of the first kind may be considered until a
satisfactory model is obtained. Such a model will have distilled out of the full complexity of the data a
set of relations that are deemed of particular importance. While the choice of measurements or
features expressed in the model is not made in a theoretical vacuum, generally the guiding theory is
implicit and not the primary topic under investigation. The emphasis is on abstracting from the data
some set of relationships or pattern and in providing a representation of these relationships through a
model (Figure 2). For our purposes here, it will be assumed that the model will be expressed in
symbolic notation.

In other cases there may be concern with trying to account for the corpus of data by making
reference to a set of processes alleged to give these data their form and structure. In this kind of
argument the emphasis is on the relations that are entailed by the processes (Figure 3) and a model
serves to express these relationships and what observations should follow if the model, constructed in
accordance with the theoretically denved relationships, is applicable (Figure 4). While the data domain
provides the rationale for selecting certain processes as most important, the initial emphasis is on
drawing out the consequences of these processes and secondarily on determining patterns in the data.

Connection between data and theory comes through comparison, of the two kinds of models,
one constructed and validated with reference to the data in question, the other

 

ModelD: yi = α + βxi + εi, where the εi have a
N(0, σ2) distribution. Validation: Compute the
least squares estimates for α and β and deter-
mine if the residuals, εi, have a N(0, σ2) dis-
tribution.

x

Data
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Theorem: A set of n points may be connected in exactly n(n - 1)/2 distinct ways.
Proof (by induction): First show that the theorem is true for n = 1. If n = 1 there are 0 connections
and 1(1 - 1) = 0.
Second, show that if the theorem is true for n = k points then it is also true for n = k + 1 points.
Suppose the theorem is true for n = k points. Consider what happens with k + 1 points. Select k of the
k + 1 points. These k points may be connected in k(k - 1)/2 ways (because of the assumption that the
theorem is true for n = k), and the remaining point may be connected to these k points in k ways. All
together, there are k(k - 1)/2 + k = (k + 1)k/2 connections. Hence the theorem is true for n = k + 1
whenever it is true for n = k.

By induction, the theorem is true for all n. QED

Figure 3. A theorem as a prototypic form for relationships used in the expression of a ModelT.

constructed and validated with reference to the asserted
structuring processes. If. in addition, there is isomorphism
between the two kinds of models, then one has constructed
an explanatory argument for those aspects of the data that
have been abstracted via ModelD through the structuring
processes represented in ModelT.

ModelT: For a group of n persons,
there will be n(n - 1)/2 possible
dyadic relationships.

Figure 4. Interpretation of the abstract
relationship of Figure 3.

An example of ModelD construction would be the well-known argument provided by Hill (1970) for
the distribution of material found at Broken K pueblo; namely, that the dichotomous distribution of room
sizes at Broken K, and hence their content in terms of artifacts found by the archaeologist, resulted from
two basic activities -- storage and cooking/living -- which had both differential architectural expression and
associated artifacts. According to the argument, if one set of rooms were the locus of cooking/living
activities, and the other set of rooms the locus for storage of raw foods and the like, then artifact remains
should be differentially distributed with pottery sherds from pots and vessels associated with cooking
predominant in the former kind of room and pottery sherds from vessels more suitable for storage
predominant in the latter kind of room. Factor analysis, with the rooms as the units and pottery types as the
variables, was used to determine if the frequency of pottery types could be accounted for by the two
postulated activities and if so, whether the activities were distributed in the rooms as hypothesized. Hill
argued in the affirmative for both questions.

The details of the argument are not of concern here, only the general form of the argument. Despite its
seemingly being cast in the form of an explanatory argument, with hypothesis, deduction, prediction and
verification, it succeeds primarily in being a ModelD. Hill's argument has two main concerns:

f

(I) idealization of the actual spatial distribution of pot sherds found on the site through assuming that the
spatial distribution of sherds is due to an underlying pattern produced by the location of activities
themselves well segregated in space with postdepositional disturbing factors assumed only to provide
unbiased noise;

(2) construction of a model that can account for the observed, idealized, spatial distribution. The model is
implicitly given through use of factor analysis, which assumes that measurements made on the data are
dependent variables whose values are the consequence of "factors" that serve as independent variables.

While there is reference to a potential theory aimed at accounting for the relationships among an
activity, objects used in the performance of that activity, the spatial locus of the activity, the location of
objects when the activity is temporally ended, the disposal of
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broken objects, and so on, the theory is implicit and a model for the structuring processes is
assumed, namely that the spatial location of pottery sherds is essentially equivalent to the spatial
location of activities. The discussion and analysis are not about the implicit theory, but focus on the
data and their spatial patterning. Hence, I argue, this is essentially a concern with a ModelD wherein
the primary goal is to establish an adequate model of the patterning found in the data.

In contrast, an example of a ModelT can be found in a recent paper by Johnson (1982).
Johnson's argument, rephrased a bit to make it briefer, is based on the deduction that the number of
dyadic relationships in a group of persons increases essentially as the square of the number of
persons, n, in the group (see Figures 3 and 4). From this relationship he concludes that any activity
which depends upon all of the dyads being activated will run into one, or possibly both, of two
problems:
(1) overload of the individual's short term memory capacity which appears to be limited to about 7

distinct chunks of information being handled simultaneously;
(2) the large amount of time required to activate all the dyads.

Johnson then asserts that consensus decision making will break down and conflict will be more
likely to ensue as the group size becomes larger. He uses data given by Lee (1979) on frequency of
conflict in two !Kung groups as a test of the applicability of the model.

Johnson takes Lee's reports on conflicts amongst the !Kung as if these are equivalent to conflict
as expressed in the model and implicitly, but erroneously, assumes that his interpretation of Lee's
data is equivalent to a model of !Kung behavior. Essentially, he assumes that the conflict examples
reported by Lee are the result of a breakdown in consensus decision which otherwise requires all or
most of the dyads to be separately activated. As Read (1989b) points out, this is an inadequate model,
in the sense of ModelD, for !Kung behavior.

Thus, in Hill's case we find construction of a ModelD, with theory and instantiation of theory
through a ModelT taken as implicit, whereas in Johnson's case we find construction of a ModelT
based on an argument relating the number of points and number of connections between the points,
but now a ModelD of !Kung behavior is implicitly assumed.

MATHEMATICS OF PATTERN VERSUS MATHEMATICS OF RELATIONSHIPS

These two examples illustrate nicely a critical difference in the kinds of mathematical arguments
that are utilized in the two kinds of models. In Hill's case the problem is largely one of inferring a
pattern in the face of extraneous noise and the technique used is statistical. In Johnson's case the
question has to do with the relationship between the number of persons and the number of dyads,
and from this relationship, how the likelihood of reaching a consensus is affected as the group size
increases.

Common to both is the use of mathematical concepts for reasoning from one set of information
to another. Hill's analysis is dependent upon statistical theory which relates, in his case, "hidden"
factors to measured values for the observed variables, as well as the relationship of the parameters in
the model to sample data. The specific content is irrelevant to the underlying statistical theory as the
theory is concerned with the interconnections between a specified model and its parameters, on the
one hand, and variability and relationships in sample data as these relate to population parameters, on
the other hand. Statistical methodology provides the means by which a pattern as expressed in a set
of data can be modeled. Since the underlying theory for the statistical methodology is disconnected
from the specific context, it is not theory about the context, but theory about
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patterning and its expression in sample data, hence is limited in its range of application primarily by
questions about the goodness-of-fit of a model to a population.

From the viewpoint of statistical methodology, the model need not have immediate
interpretation at the level of process and may in fact have no such interpretation. In applications,
statistical methodology is aimed at the correctness of a model as descriptive of a given population,
not whether the population is necessarily the product of a single process nor whether the model is a
mode! of that process. For example, the model

log y =a + b log x + ε,

in which ε is an error tern, has been used to describe the relationship between rainfall and population
density for hunter/gatherers in Australia (Birdsell 1953) and Africa (Martin and Read 1973). In both
cases the posited model fits the sample data, hence is a valid model for these data as a description of
the relationship between rainfall and population density. The statistical validity of the model,
however, neither addresses the processual question of how rainfall, as a proxy measure for resource
density, becomes translated into population density (but see Read 1987 for such an argument), nor
even if there is a single process that characterizes all of these hunter/gathering groups. No theory is
provided to characterize the process by which environmental measures become translated into
population density, hence it is, par excellence, a ModelD. To use a distinction made by Cowgill (1986),
it is a uniformity, not a regularity; that is, it is a pattern seen in the data, not a pattern derived from
first principles or axioms.

In the second example, mathematical reasoning is used to connect the number of persons in a
group to the number of dyads, and the number of dyads to the likelihood of a breakdown in
consensus decision making if the latter is dependent upon all of the dyads being activated. Here the
reasoning is tailored to the specific process under investigation and the aim of the mathematical
reasoning is to establish a general relationship among these variables. More exactly, the mathematical
reasoning is aimed at establishing the relationships within the structure that has been defined, hence
the argument is expressed abstractly and then given interpretation in the form of a model for the
abstract argument. The interpretation depends upon giving the abstracted variables content, such as
number of persons, number of dyads, likelihood of not reaching a consensus, and so on, but, in the
mathematical sense, the functional form of the model is a necessary consequence of the posited
relations, hence it is a ModelT. In Cowgill's terms, the ModelT describes a -- hypothetical -- regularity,
not a uniformity.

Whereas a ModelD is validated through its fit to a set of data, a ModelT is validated through it
correctly representing the relationships derived in the theory for which it is a model. While a ModelT
may be valid for a process but not fit a set of data, a ModelD may be valid for a set of data but riot
be a model for any process. Explanation requires that a ModelT also be a ModelD, but this is a
necessary, not a sufficient condition. It is not sufficient since the posited process used for
constructing a ModelT may be a summary kind of process and the pattern expressed through a
ModelD may be an overly simplified idealization. The overall argument is explanatory in a conditional
sense: If the stated process is sufficient and the idealization is not overly simplified, then the
correspondence between a ModelD and a ModelT establishes an explanatory argument for the data at
hand. Otherwise. the argument is explanatory in form but not satisfactory (Read and LeBlanc 1978).

ANALYTICAL LEVEL FOR THEORY CONSTRUCTION

The distinction between a model of a process and a model for a pattern entails another
consideration, the analytical level at which the two kinds of models are aimed.
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Pattern, as it relates to archaeological data, is expressed through the material remnants of behavior,
whereas process underlies behavior. The question that arises is whether or not behavior can serve as
a common meeting ground for both ModelD and ModelT kinds of models, or whether these two
kinds of models involve different levels, with behavior the bridge between them.

To put it another way, the claim that behavior is the appropriate level for developing theory
implies that theory must be couched in relationships abstractable from concrete actions, hence in
relationships which are neither time nor space specific if theory is to be based on universal processes.
If so, then culture becomes a kind of residual category with little direct importance in formulating
appropriate theory. Yet a mathematical theory of behavior seems to demand a kind of regularity
which seems unrealistic. By positing universal processes, the basis for locally differentiated behavior
would demand special explanations that contradict precisely those premises.

I am not arguing that pan-human regularities do riot exist, for the notion of a species implies a
shared genetic system and with that, the potential of shared biological traits, hence of universal
behavioral traits emanating primarily from this biological substratum. The question is not whether
there are universal behaviors, but whether these alone suffice to serve as a theory of human systems.

An alternative is to take culture in its sense of a constricted reality, and view culture as the
means by which external phenomena are given meaning and interpretation, and through meaning and
interpretation, the basis for behavior. For example, I have shown elsewhere (Read 1978) that !Kung
camps apparently have a regularity in their spatial construction based on the spacing between huts.
One can account for the empirical data on the relationship between number of families in a camp and
the camp area by positing that huts should be at a fixed distance from one another, independent of
the number of huts in the camp. Further, the distribution of families in huts is also not happenstance,
but a direct mapping of kinship relations according to kin distance from the focal family of the camp
(see Figures 2.1 and 2.2 in Yellen 1976).

The spacing of huts does not have a material basis in that it has no apparent connection to
material aspects of !Kung existence, here cannot be understood without reference to culture through
the fact that this particular spatial arrangement is but one out of many possible spatial relationships
that could have been utilized. Through being given cultural meaning, space comes to affect and
provide the context for behavior, rather than the reverse.

The spatial arrangement of families in huts according to kinship relations is even more clearly
part of a constructed reality since the kinship system is a conceptual construction abstracted out of,
but transcending, the biological relations of parent and offspring, much as arithmetic is a conceptual
construction abstracted out of, but transcending, the quantity of objects in collections of objects as
discussed above. A kinship terminology, taken as a conceptual structure, is amenable to modeling as
an algebraic construction (Read 1984), hence amenable to theorizing in an axiomatic sense. Neither
biology nor behavior determines kin relations, hence it is the constructed reality of a kinship universe
that provides the framework within which behavior takes place, and the specific behavior cannot be
understood without first understanding that constructed reality.

If behavior is the individual or group's action with respect to phenomena that have been given
meaning and interpretation through culture, then an adequate theory will have to begin at the level of
culture, not behavior. Or, more accurately, a theory of behavior will have to take into account the
culturally constructed universe within which behavior takes place. The cultural aspects give, as it
were, the initial conditions and without knowledge of the initial conditions, models of behavior will
be deficient as they attempt to grapple with more than summary aspects of behavior. Mathematical
formalism aimed at expressing the logic and implications of a theory of behavior will need to
incorporate the properties of this culturally constructed universe.
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PART II: MATHEMATICAL APPLICATIONS

INTRODUCTION

Whereas mathematics uses symbols, archaeology deals with material objects, hence mathematical
applications necessarily begin with a mapping from phenomena to symbols in either a quantitative or
qualitative mode. The mapping provides a symbolic representation of the material objects, which
enables a suitable calculus to be invoked for reasoning about processes. The familiar procedure of
measuring m objects via a metric measure, V, for example, allows for a symbolic representation of
these objects in the form of a vector

V = (V1, V2, . . . , Vm ),

where Vi is the value of the measurement V for the ith object, as a point in Euclidean m-space, a finite
dimensional vector space. This representation permits a claim such as: "one measurement, V, is
causally related to another measurement, W ", to be symbolically expressed, say, as a linear regression
model relating the vector V for one set of measurements to the vector W for the other set of
measurements. Implications and properties of the postulated relationship can now be determined
through reasoning based on the properties of vector spaces. For instance, the mathematical expression
for a least squares solution to estimates of the n coefficients, with n < m, the number of objects being
measured, in a linear model relating the measures V and W is determined through orthogonal
projections of vector spaces, specifically through projection of the vector W in the m-dimensional
measurement space onto the n-dimensional space of coefficients (see Leon 1986:188-197).

Thus, as has been discussed by Borillo (1977), archaeological problems may be studied by using a
symbolic representation to embed them into a domain wherein the logical implications of
relationships can be developed. In addition, a specific solution may depend upon positing certain
assumptions, e.g., that the relationship in question is linear and parameters are to be estimated using a
least-squares solution. The symbolic representation allows for implications and/or computational
methods applicable to the empirical domain to be constructed through properties derived by
reasoning about properties true of the symbolic system, e.g., the properties of orthogonal projections
of vector spaces. Finally, the implications and/or methods are translated back to the empirical domain
for their implementation.

In applications, the underlying theory for the computational method, such as the orthogonal
projections in the above example, is generally taken as a given. This, however, is but a convenience
that is satisfactory only for as long as there is no discrepancy between the underlying theory and the
assumptions used to formulate a particular method, on the one hand, and the relationships as
perceived by the archaeologist, on the other hand. An assumption such as a linear relationship may,
however, be unrealistic or the presumed independent/dependent relationship of variables may be
untenable when translated back into what it means in the archaeological context. When the assumed
congruence between method defined through the symbolic representation and data structure as
considered by the archaeologist breaks down, then the reasoning used to link method and data
through the symbolic representation must be reexamined and corrected  (Read 1985, 1987). To do so
requires that the mapping from material object to symbolic representation be made explicit so that the
conclusions drawn from symbolic/mathematical reasoning can be properly translated back to
properties in the archaeological domain for confirmation.

In this second part of the review several applications of mathematical reasoning to archaeological
problems will be considered with respect to their success in adequately
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linking (1), empirically defined relationships with mathematically defined relationships, and (2), the
symbolic with the empirical domain. It will be seen that a number of deep issues regarding attempts
to symbolically model properties distinguished in the archaeological domain arise when this
comparison is made. These issues relate, in particular, to the ability of human systems to change and
modify themselves according to goals that change through time, on the one hand, and the common
assumption of relative stability of the structure of ModelT models used to express formal properties
of systems, on the other hand.

Typically, modeling begins by assuming structural stability of a model's form and parameters.
But structural stability does not characterize human systems. In human systems both structural form
and parameters are subject to change on time scales commensurate with time scales considered
appropriate for the model by the objects of the model, namely human actors. I suggest that a major
challenge facing effective -- mathematical -- modeling of the human systems considered by
archaeologists is to develop models that can take into account this capacity for self-modification
according to internally constructed and defined goals.

MATHEMATICAL REPRESENTATION

Applying mathematical reasoning effectively to the archaeological domain, then, depends upon
determining a symbolic representation in which the logical implications of processes -- whose
conceptual origin lies in archaeological reasoning -- can be carried out. Viewed in this manner,
application of mathematical reasoning becomes a means to extend and expand upon archaeological
reasoning, though in an idiom that may be less familiar than verbally stated arguments.

Mathematical representation differs from verbal argument in its relationship to explanation, for
scientific explanation essentially involves subsumption of the particular case as an instance of
generalized and abstracted relationships that, in turn, may be derived from more fundamental
properties via deductive reasoning. Thus, an elliptical orbit of a planet about the sun is a particular
instance of one mass revolving about another, and the orbital form is derived deductively from the
equation linking force, mass and acceleration, F = ma, and the equation giving the force of attraction
of two masses, F = GMm/R2. Contrariwise, when an argument is couched in a non-symbolic form,
appeal is often made to seemingly reasonable arguments, not logical deductions, thereby making the
connection between fundamental properties and specific instance more tenuous.

How the two forms of argumentation differ in their relationship to explanation can be
illustrated with an example prototypic of many applications of mathematical argumentation to
archaeology made through borrowing of models from other disciplines (see Keene 1983). The
example is taken from the construction by Jacobsen and Eighmy (1980:333) of a "mathematical
theory of horse adoption on the North American plains" with the goal to "understand the temporal
form and rate of adoption". The means is an information diffusion/adoption model borrowed from
Dodd (1953, 1955, 1958).

Verbal argument

Jacobsen and Eighmy begin by referring to a verbally expressed argument given by Wissler
(1923) for a uniform rate of adoption of traits in general, and by Ewers (1955) for an increasing rate
of adoption of the horse by pre-historic Plains Indians. Both of these arguments cannot be true
simultaneously, and neither provides an effective explanation for why the rate should take on the
asserted form (Jacobsen and Eighmy 1980). The verbal arguments lack the means to demonstrate a
connection between the posited rate of
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adoption of traits by whole societies and more basic, underlying processes upon which societal
adoption depends.

Further, logical implications of the posited rate for the data at hand are not explored in any
detail. Indeed, it would be difficult to develop implications in a verbally expressed argument for, say,
how the number of groups adopting the horse should vary through time. Yet the latter is information
ore would like to have. Is there, in effect, a single adoption process operating so that particular
instances of trait adoption, either by different groups or of different kinds of things being adopted by
individuals and/or groups, are but differences at the level of boundary conditions and parameter
values in a common model? Or does the manner in which adoption takes place possibly differ in its
temporal structure across groups and/or things being adopted?

Symbolic representation

Jacobsen and Eighmy address questions of this nature by embedding the particular instance of
horse adoption into a formalized theory of adoption/diffusion of ideas, traits, etc. through a
population (Dodd 1953, 1955, 1968; see also Lave and March 1975). In this theory the underlying,
basic process is given symbolic representation through which a deductive argument linking the
underlying process with the equational form for the time-based pattern of adoption/diffusion of a
trait throughout a population can be constructed. The latter may then be given empirical test for its
applicability to empirical contexts.

The argument runs as follows (see Lave and March 1975). For diffusion to take place,
individuals who currently have the information being diffused must be in contact with those who do
not have it. Further, when in contact, there must be conveyance of the information from the one
with the information to the one without, and the latter must accept the information. Next, the new
recipients of the information must repeat the process with yet other individuals who currently do not
have the information.

Of these several conditions, the process by which there will be an encounter between a person
with, and a person without the information is primary for structuring the form of the diffusion. The
encounter process can be given representation through the following probability argument.

Suppose we have N persons each of whore is in exactly one of two states: '+' or '-', where the
'+' state means that the person has the information, and the '-' state means that the person does not
have the information. Let P(t) be the function giving the number of the persons who are in the '+'
state at time t, and let Q(t) = N - P(t) be the number of persons in the '-' state at time t. Call a meeting
of two persons an encounter event. Let the symbol [-,-] denote an encounter event where neither
person has the trait, and call it a Type 1 event; similarly, let the symbol [+,- ] denote the encounter
event where exactly one of the two has the trait without regard to order, and call it a Type 2 event;
finally, let the symbol [+,+] denote an encounter event where both persons have the trait, and call it a
Type 3 event. For there to be a change in P(t), there first must be a Type 2 encounter and second a
transformation from a [+,-] event to a [+,+] event. What we need to know is how Type 2 encounters
and their transformation to Type 3 events are structured through time.

Suppose that the likelihood of two persons having an encounter is independent of the respective
states of the two persons, hence random with respect to their respective states. If the encounter is a
random event, the probability that one of the two persons is in, say, the '+' state at time t is p(t)/N
and that the other person is in the '-' state is q(t)/(N - 1). The event, [+,-], has probability

Prob([+,- ]) = [2P(t)/N] x [Q(t)/(N - 1)] = (2N/(N - 1))p(t)q(t) = kp(t)q(t), 

where: p(t) = P(t)/N and q(t) = Q(t)/N.
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Thus we can postulate that the rate of change from persons in the '-'state to persons in the '+' state
will be proportional to p(t)q(t). Note that this expression also allows for less than perfect information
transfer without further modification so long as the likelihood of transforming a [+,- ] event into a
[+,+] event is constant and independent of the value of P(t) or Q(t).

If the population is large enough, we may treat p(t) and q(t) as if they are continuous functions
(but see below) and we arrive at:

dp(t)/dt = kp(t)q(t) = k[p(t) - p2(t)]

as a ModelT expressing the rate at which a trait diffuses through a population when it is passed via
individual, random encounters.

Note that other processes may be defined for transformation of Type 2 encounters to Type 3
events such as broadcast of information from a few individuals to many individuals (see Lave and
March 1975), or of information only passing from key individuals. Yet another model would be
produced if individuals with information only contacted nearby persons so that diffusion is in the
form of a wave front, a model that has been used by Ammerman and Cavalli-Sforza (1971, 1973.
1979) for the initial spread of agricultural information through Europe.

At this point, the original, verbal idea has been given symbolic representation. From the
symbolic representation it may be seen that the behavior of the system is not determined by what p(t)
and q(t) "mean", but by how p(t) varies with time through transformation of Type 2 encounters into
Type 3 encounters. Whether p(t) is the number of persons in a social group who have heard a rumor,
or the number of Plains Indians groups who have horses is irrelevant in terms of the representation
so long as the process by which the trait or information passes from one person to another person,
or one group to another group, is adequately captured by the stipulated model for formation and
transformation of encounters. What one wants to know, then, is the manner in which p(t) varies with
time; that is, the functional form of p(t). Or to put it another way, What -- mathematical -- function
would satisfy the above equation? That answer is found by turning from representation to deduction.

Deductive argument

Equation (2) is an example of what is called a first order -- no term has derivatives beyond the
first derivative -- linear -- only powers of p(t) are added together -- differential -- due to the
derivative, dp(t)ldt, symbolically expressing the rate of change of p(t) with time -- equation. Within
mathematics there is a body of theory that has to do with the solutions of differential equations and
within that theory are methods for solving particular differential equations. Equation (2) is called a
separable differential equation since, using differentials, it can be rewritten in the form dp/(kp - p2) =
dt, and now all terns involving p are on the left side of the equation and all terms involving t are on
the right side. The equation may be solved by integrating both sides of the equation, equating the
results, and then algebraically simplifying them. After these steps are carried out, one finds that the
solution to the equation is given by:

p(t) = 1/(1 + q0/p0e
-kt ),

where: p0 and q0 are the proportion of persons with and without the trait at time 0.
respectively.

The terns p0 and q0 are the boundary conditions, the initial numbers of groups with and without
horses, respectively, and k is a parameter for the equation whose meaning is
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expressed in Equation (1). The graph of p(t) is the well-known S-shaped, or sigmoid, curve which will
approach p0 asymptotically from above as  t à 0, and will approach 1 asymptotically from below as t
increases indefinitely. In Jacobsen's and Eighmy's study, a modified form of Equation (2) which has
been multiplied by N is used so that the curve is bounded above by N, the total number of persons or
groups.

Fit of Model, with empirical data

The Mode1T given by this equation was compared by Jacobsen and Eighmy to empirical data on dates
for adoption of the horse by various Plains Indian tribes geographically separated into Northern and
Southern tribes. The division into two groups reflects the assertion that the pattern of horse adoption
was not the same for all Plains tribes. The ModelD used for these data consists of a cumulative graph
of the number of groups who have adopted the horse versus time. Though this might not appear to
be a ModelD at first glance, its idealized form for the data at hand -- which constitutes the basis for
calling it a ModelD -- is demonstrated through the criticism expressed by Ewers (1981), whose data
were used to produce the graph, of Jacobsen and Eighmy's claim that it is possible to date horse
adoption by a Plains tribe to the nearest 5 years.

Jacobsen and Eighmy found Pearson product moment correlation r2 values of 0.99 and 0.98 for
these two groups -- a seemingly almost perfect fit between ModelT and ModelD. The conditions for an
explanatory argument linking a particular observation to a general theory seem to be satisfied, and it
would appear that the pattern of change through time in the number of Plains tribes who have
adopted the horse has an explanation through the model used to instantiate a generalized theory for
the adoption/diffusion of ideas. The only difficulty, as will be discussed in the next section, lies in the
failure of Jacobsen and Eighmy to demonstrate that the process underlying the model derived from
Dodd's theory is the process operating in the situation considered by them. This problem is not
unique to their application; it arises repeatedly when the basis for application of a ModelT to a context
is primarily by analogy and not through derivation (see Read 1985). Goodness of fit between a ModelT
and a ModelD alone is not sufficient as it is perfectly possible to have a good fit with the wrong model
as shown by Read and Read (1970) in a critique of an application of game theory to decisions made by
fishing captains in a small Jamaican village.

RATIONALE FOR MODELS: MODELING BY ANALOGY

Modeling by analogy refers to the situation where a model is transferred from one domain to
another on the basis of a common goal, rather than through demonstration of isomorphic processes.
For example, Equation (2) was derived as a ModelT for adoption/diffusion of ideas in a population
based upon the notion that ideas are transferred from one person to another through dyadic
encounters produced randomly in the population; further, this model has been given empirical
support in a number of domains for the validity of its application. Jacobsen and Eighmy have
examined a different domain, though, namely the diffusion of the horse through Plains Indian tribes,
which ostensibly also involves diffusion of ideas, but in this case from one tribe to another. So the
analogy:

person : diffusion of ideas :: tribe : diffusion of horse usage,

becomes the means to justify the use of the theory and model applicable to the relationship on the
left side of the analogy as the theory and model for the right side of the analogy.
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But analogies do not establish isomorphism between the respective processes and in this case
the processes are not the same. Equation (2) was derived by assuming that ideas are transferred when
there are dyadic encounters whose occurrence is random with respect to the members of the
population. The analogous statement for the Plains tribes would be that tribe A which currently is
not using the horse would adopt it after a random encounter with tribe B which currently is using the
horse. A pattern of random encounters seems implausible given the geographic scale over which the
Plains tribes were distributed and their inter-tribal networks. It would seem more likely, since tribes
are relatively fixed in space, that diffusion took place between neighboring tribes. This would lead to
the wave front type of diffusion discussed by Ammerman and Cavalli-Sforza (1973, 1979) in their
argument for the initial diffusion of agriculture from the Middle East to Europe.

An advancing wave model would also lead to an S-shaped curve for the cumulative number of
tribes who have adopted the horse through time. Consider, for example, the tribes as points in a
rectangle and suppose a circle represents the wave front and expands by increasing its radius; points
will be enclosed by the expanding circle at an increasing rate until the circle begins to cover most of
the rectangle, at which time the rate at which points are enclosed will decrease, hence leading to an
S-curve. Thus, the good fit Jacobsen and Eighmy found may only reflect the fact that an S-curve is a
good ModelD for these data, and that different processes can give rise to similar empirical
observations. A critical test for distinguishing between a wave front model for diffusion and Dodd's
model based on random occurring dyadic encounters could be based on the temporal/spatial pattern
of horse adoption by the Plains tribes.

Another shortcoming arises from the fact that the original model was predicated upon a fixed
pattern for the transformation of [+, -] encounters into [+, +] encounters, and no model was
developed for this transformation (but see Renfrew 1984a:396-397 for the outline of such a model).
Such simplification is, of course, widespread when trying to develop theory applicable to complex
situations. It arises in a mre extreme -- and certainly more controversial -- form in the attempts of
some sociobiologists to reduce human cultural phenomena to the working out of essentially
biological processes (e.g., Hughes 1988). Unfortunately, a mathematical representation offers no
direct way to resolve this problem. It can be considered indirectly through distinguishing between
properties that would logically be entailed by the posited processes and those that would not. In the
context of Dodd's theory, the diffusion process is structured by the process that leads to encounters
between those with and those without the information in question. What, then, of situations that
differ in the pattern of diffusion, yet where the model for encounters remains essentially fixed?

This is a situation discussed by Spratt (1982:80) who considers innovation to consist of two
parts:

(1) a driving force for innovation -- which entails a "'thermodynamic' innovation model
[that] describes the driving force or incentive which motivates it"; and

(2) a kinetic model that describes "the speed at which the innovation in fact takes place".

The actual pattern is the balance between these two processes. Spratt notes that a "sigmoid
curve X represents a successful innovation in which the market builds up by recommendation of one
satisfied customer to a new customer" -- which is essentially the process assumed in Dodd's models
-- while a linear curve might result through "a relatively unsuccessful innovation Y in which sales
build up in proportion to the marketing effort of the innovator" (Spratt 1982:82). In the latter
situation, encounters, per se, do not lead to a transmittal of information as the encounter is only the
means for yet another process to operate, namely persuasion on the part of the person with the
information.

The representation Spratt uses for the kinetic aspect of the process of adoption of innovation is
essentially a ModelD in the form of what is called 'Critical Path Analysis', as
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developed by the du Pont company (Spratt 1982). The idea of Critical Path Analysis is to identify
the various steps that need to be activated between initial idea and final sales, along with the likely
time duration for these steps. The thermodynamic part is described through a "Cash Flow Curve",
and "negative cash-flow" is -- in modem innovations -- seen as a key factor in early stages of
development.

When Spratt attempts to apply the framework to non-industrial societies, the problems that arise
with what are essentially verbal arguments become evident. Negative cash-flow needs to be translated
into terns relevant, say, to a hunting/gathering society to account for why the bow and arrow --
ostensibly having low cost in its production and high returns -- only appeared as late as it did in
human history. Despite attempts to provide a more rigorous framework, Spratt falls back on
"just-so" kinds of explanations and suggests:

"One possibility is that their world-outlook would not be conducive to this innovation.
Clark (1963) tells us 'There was a deeply felt community between man and the animals he
hunted for his food'. To launch a devastating projectile might have been inconceivable in this
climate of thought" (Sprats 1982:87-88).

How or why such "world-outlooks" come about or change, assuming that world-outlook is the
equivalent of negative cash-flow, is not accounted for, hence one is reduced to arguments that appeal
to one's sense of plausibility.

Verbal arguments are also defective when trying to link one process to another at the level of
what seems to be analogous outcomes. Spratt notes that the sigmoid curve implies a very rapid rate
of change in the middle portion of the curve and that this is essentially the same as Renfrew's (1978)
use of Catastrophe Theory (Thom 1975) "to explain the very rapid changes which can take place in
material cultures" (Spratt 1982:81). While the consequence, rapid change in both cases, seems to be
similar, the processes involved are unrelated. The sigmoid curve derives, for example, from Equation
(2) which is based upon the behavior of a system whose properties are determined by this equation.
In particular, the parameters that appear in Equation (2) are fixed. Though there is rapid change, it is
continuous change deriving from change in the value of the variable, t.

In Catastrophe Theory. however, rapid change arises from discontinuities. For some differential
equations, the surface defined by the set of equilibrium values (i.e., values x, that satisfy dx/dt = 0) as
parameter values are allowed to vary, may be a surface that has been "folded over". For example, the
set of solutions, [(xs: α, β)], for the condition dx/dt = 0 applied to the differential equation, dx/dt =
x' - αx - β, forms a surface with an S-shaped fold (see, e.g., Figure 21.2 in Renfrew 1979:492; Figure
7.4 in Beltrami 1987:176). When there is such a fold, a shift due to a small change in parameter value
from an equilibrium value on the upper part of the fold to an equilibrium value on the lower part of
the fold is locally discontinuous. Mathematically, the change in going via a discontinuity from the
upper surface to the lower one is instantaneous; in an application, it would be a "catastrophe". This
rapid change in system due to a shift across a discontinuity in equilibrium values is not the same
process of rapid change that occurs as one moves smoothly along the sigmoid curve.

CHANGE IN PARAMETER VALUES

The situation dealt with by Catastrophe Theory addresses a complex problem that has only
been poorly considered when dealing with human systems. The problem has to do with the assumed
constancy of parameter values in models for most theories, whereas human systems are capable of
internally driven change and modification of parameter values.
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The nature of the problems that arise with change in parameter values can be illustrated with a
commonly used model for demographic growth or decay, namely:

dp/dt = rp(1 - ap)

The usual interpretation of the parameters r and a is that r measures the intrinsic growth rate, a is a
summary term for all factors that inhibit growth and 1/a is the equilibrium population value since
dpldt = 0 when p = 1/a. Note that Equation (5) has the same form as Equation (2) for diffusion and
is identical to Equation (2) if a = 1. Thus, both diffusion as modeled by Equation (2) and growth as
modeled by Equation (5) are structurally similar processes and both lead to a sigmoid curve for their
solution.

Eighmy (1979) has applied Equation (5) to population growth curves in the Southwest for 14
different sites, using number of logs in the construction as a proxy measure for population size, with
time spans in a site ranging from 15 to 135 years. He found reasonable fit in each case, though with
different parameter values (e.g., r varied from 0.15 to 0.81 across the 14 cases). Contrariwise, Plog
(1979) examined Hay Hollow Valley over a time span of about 1000 years and found a complex
pattern that could not be summarized in any simple manner. The differences between the two
studies seem to relate to the fact that demographic processes, though relatively unchanging over the
short run, are not invariable and are restructurable. The parameters r and k are only locally constant.

While the fact that parameters are not constant can be expressed easily in a modified form of
Equation (5), namely,

dp/dt = r(t)p(t)[1 - a(t)p(t)],

this formulation only defers the problem to one of identifying the functions r(t) and a(t) through an
as yet unarticulated theory. And therein lies the difficulty. But before discussing this point further, it
will be useful to give a brief characterization of dynamic system modeling, for which Equations (2)
and (5) are specific instances.

Dynamic system modeling

There are two classes of models to be noted: continuous and discrete. It is assumed that there is
some set of variables, called 'state variables', whose values at time t are used to characterize the state
of the system at this point in time. First, consider the case where it is assumed that state variables
vary continuously with time. The characterization may be motivated by noting that Equations (2)
and (5) are of the form

dx/dt = x(t)

where x is a state variable whose value, x(t), represents the state of the system modeled by Equation
(b) at time t. More generally, a system S may be defined to consist of:
(1) a finite set of state variables { x1, x2, ..., xn } ,
(2) a set of differential equations expressing the rates of change of these variables

dx1/dt = f1(x1, x2, ..., xn)
dx2/dt = f2 (x1, x2, ..., xn)

dxn /dt = fn (x1, x2, ..., xn),
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(3) a set of constraints

a1 ≤  x1 ≤  b1

a2 ≤ x2 ≤ b2

an ≤ xn ≤ bn

These relationships may be written mane succinctly in vector notation:
(1') A vector x of state variables,
(2') a vector differential equation, dx/dt = f(x),
(3') vector constraints, a ≤ x ≤ b
The vector x(t) expresses the state of the system at time t; the vector differential equation dx/dt = f(x)
expresses the rate of change of each state variable as a function of the current value of the state
variables, which also implies that it is a "forgetful" system, and the constraints represent physical
limitations on the values for the state variables, such as nonnegative values for population sizes.

A dynamic system based on difference equations differs from the above characterization by
assuming that state variables do not vary continuously with time but only change values at discrete
times t1, t2, ... In the place of derivatives, dxi /dt, quotients may be used:

∆x/∆t = (x(ti+1) - x(ti))/(t i+1 - t i)

The contrast is not merely one of discrete versus continuous, but can lead to radically different
properties for analogous models. For example, Equations (2) and (5) have stable equilibrium solutions
but their difference equation parallel, which models more exactly the dynamics of horse diffusion
examined by Jacobsen and Eighmy, exhibits highly complex behavior (Beltrami 1987:218-226)
sometimes referred to as chaotic (Strang 1986:504-507).

A ModelT consists of a specification, such as Equation (2) or (5), for the functions f1, f2, ..., fn and
in such a specification will appear parameters α1, α2, ..., αm. The parameters are generally assumed to
be constant and analysis typically consists of determining stability and equilibrium properties of the
system S so defined (see, for example, Strang 1986; Beltrami 1987).

Applications of dynamic systems

An example of the use of a discrete dynamical system is provided by Ammerman et al. (1978) in
their critique of the static -- or ModelD -- model used by Renfrew et al. (1968) for the spatial
distribution of obsidian passed from one site to another through trade. The static model is of the
form

Q = f(D),

for the quantity, Q, of obsidian at a site at distance, D, from a source. Ammerman et al. (1978)
suggest using instead a dynamic model -- a ModeIT -- of the form

∆Q/∆t = f(D, p, d).

where: p =the proportion of a group's obsidian passed to the next group,
d = drop, i.e., discard, rate.
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The specific model is given in the form of a difference equation:

Qt+1(j) = [(1 - p)Qt(j) + pQt(j - 1)](1 - d).

where: Qt(j) = amount at site j at time t

When d = 0, which is an implicit assumption underlying Equation (9), one obtains the equilibrium
solution of all sites having the same quantity, whereas for d > 0 equilibrium values will be linearly
decreasing with distance versus log(Q(j)). This, in conjunction with Renfrew et al.'s (1968) claim for a
ModelD of the same form, establishes the basis for an explanatory argument (but see Read 1989 for a
critique of the assumptions underlying Equation (11)).

More generally, Cooke (1979) has suggested the use of models based on dynamic systems
modeling, game theory, optimization theory and graph theory as ways for the archaeologist to have
"new tools for the difficult task of understanding cultural change" (p. 46). The enormity of the task is
perhaps indicated by a failed attempt to apply precisely these tools to construct an "explanation of the
emergence of complex societies in the Aegean in the third and second millennia BC" (Cooke and
Renfrew 1979:328). The means was a simulation using a system based on six state variables relating to
subsistence, metallurgy, craft, social roles, culture and external trade, respectively. A linear, structural
model was defined in which initially a matrix A of interactions between pairs of variables was
constructed, with '1' indicating a positive relationship, '0' no relationship and '-1' a negative
relationship. A second simulation used quantitative estimates for these interactions, but qualitatively
the same results were obtained: an increase in the values of variables to their maximum value or decay
to a value of 0.

Cooke and Renfrew deductively derive that the system will have an equilibrium value between
zero and some maximum value if, and only if, the determinant of A = 0, where A is the matrix of
parameters for variable interaction. Since it is unlikely that A will be a singular matrix (i.e. det A = 0),
they conclude that "these equations, in their present form, are inappropriate for models in which
equilibrium states are expected" (p. 341). They conclude that failure to find equilibrium states --
which are assumed to be a characteristic of real world systems -- is due to using constants for the
interaction parameters.

Because archaeologists necessarily deal with contexts that have left material remains of their
existence, hence are likely to have had relative longevity, it is sometimes argued that much of what is
found by the archaeologist is the remnant of systems more or less in equilibrium. If so, an alternative
to modeling the system directly, as Cooke and Renfrew attempted to do, and then determining how
the system converges to an equilibrium state, would be through examining the trajectory of systems
as they change from one equilibrium state to another. Indeed, models based on rationality or
optimality of behavior implicitly use this approach when examining how behavior will change under
new conditions.

Change in parameter values and catastrophe theory

The effect of changing parameter values is examined in Catastrophe Theory through considering
the surface defined by equilibrium states for a system such as Equation (2) when its parameters, in
this case r and a, vary. As mentioned above in some cases, but not for Equation (2), the surface is
folded over so that a small change in parameters values can drive the system to shift discontinuously
to a new equilibrium state. A discontinuous shift to a new equilibrium contrasts with systems such as
Equation (2) where a small perturbation in a parameter value only leads to a small shift in the
equilibrium state.
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Renfrew (1979) has used the language of Catastrophe Theory -- in what Casti (1989:175) refers
to as the "metaphysical way" -- to discuss shifts from one form of political organization to another,
such as from segmentary to chiefdom to state systems (Figure 21.8 in Renfrew 1979:501). Renfrew
considered the topological properties of what is known as a butterfly catastrophe (Zeeman 1977) and
identified portions of the surface with each of segmentary, chiefdom and state societies and
concluded that a change from a segmentary to state society might involve something analogous to a
catastrophe; i.e., a locally discontinuous shift from one equilibrium value to another. Renfrew
recognized that the argument is primarily heuristic and that nothing has been proven "in the
mathematical sense" (p. 504). As in Spratt's paper, Renfrew has proposed a ModelD, and extension
beyond using Catastrophe Theory as a metaphor remains at the level of plausibility, not
demonstration.

In part, the difficulty is conceptual and stems from reifying the society as an entity that
responds to forces acting upon it, much as a physical object responds in its movements to forces
acting upon it. For the physical object, the effects of forces on motion are well known and a
particular situation can, in principle, be examined through the appropriate application of
mathematical representation of these effects along with suitable information on boundary and initial
conditions.4 It is far from evident that a similar framework applies to whole societies. A society is
composed of both material and ideational/cultural dimensions. It can only in part be modeled as a
complex which is describable just in terms of material dimensions. Were the latter a sufficient
characterization, it would then be reasonable to simply determine regularities that emerge from the
structure constrained by boundary and initial conditions. Renfrew (1979:502-503) used this tactic
when he attempted to relate the difference between a chiefdom and a state, each in the same
ecological conditions, to "the extent to which relations within the society are still determined by kin
relationships" (emphasis added); i.e., to the initial condition as given in the specific link between
societal relations and kin relationships. But if kin relationships are part of the critical difference, then
one must understand the culturally defined, conceptual framework within which these relations are
expressed; namely the kinship terminology and its implementation through marriage rules. A change
in marriage rules, for example, is not the equivalent of a change in parameter value but involves a
restructuring of the whole system -- a topic that is not modeled by Catastrophe Theory.

Even more, kinship terminologies and marriage rules do not operate deterministically, but can
be acted upon and manipulated for individual or subgroup ends. The kinship terminology can be
mathematically modeled as an abstract structure whose properties derive from an internal logic (see
Read 1984). That the terminology has structure given by an internal logic argues against viewing
culture as merely a reflection of behavior whose determinants lie outside of the ideational realm. If
so, explanation is not "bottom up" from externally directed behavior to internal coding as culture, but
must involve the conceptual domain as both giving meaning to external events and phenomena and
serving to define a framework for behavior constrained by external conditions. The linkage between
conceptual structure and behavior is, evidently, complex and non-deterministic, yet constrained by
external conditions. It clearly has aspects open to manipulation by individuals or subgroups for
achieving both public and private goals, but such manipulation is also constrained by publicly accepted
conceptual strictures such as a kinship terminology, marriage rules, and the like. This self-evaluation
capacity, coupled with the ability of the actors in the situation to affect the societal means of
reproduction, including both material and ideational dimensions, makes modeling of societies
difficult and hard to reduce, assuming it is possible, to deterministic models.

When models incorporate parameters whose values are fixed, a non-reflective system that does
not incorporate self-modification is implicitly presumed. For example, while the equation,

dp/dt = kp,

 p/dt = kp,
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is a reasonable idealization for population growth under unconstrained conditions, it implies
exponential growth that cannot be maintained over long periods of time. So one postulates

dp/dt = kp(1 - kp) = kp - (kp)2,

as a ModelD in which are incorporated, in summary fashion, all constraints on population size.
Problematic, however, is the assumption that these constraints are assumed to be fixed. Over time
scales appropriate to archaeological data these constraints are not fixed. The issue is, then, not so
much one of modeling population growth under constrained conditions but modeling the dynamics
of how those constraints come about and how they come to be modified. Without identifying the
process by which change takes place in the birth rate, for example, Equation (13) is only descriptive,
hence a ModelD and not a ModelT.

A ModelT for a stabilized population has bees given by Read (1987) for the !Kung San. The
process driving the system towards a stable equilibrium is identified as the decision a woman may
make regarding spacing of children in accordance with greater value being placed on family well being
than family size, per se. The combined effects of

(1) growth rate decreasing monotonously with bath spacing,
(2) population increase leading to a declining marginal rate of return in foraging labor,
(3) allocation of limited time and energy in accordance with family well-being,

are sufficient to argue that population sire will be driven to a stable equilibrium value solely on the
basis of individual self-interest (see Read 1987 for details). Interestingly, the model implies, perhaps
counter-intuitively, that the "distance" between equilibrium population size and potential carrying
capacity -- in the sense of the maximum population size that could be sustained over the long run
without technological/structural change brat utilizing all available food resources -- should, keeping
fixed the technological level of resource procurement system, increase with declining resource density
since the marginal rate of return on foraging labor should decline non-linearly and proportionally
more rapidly with decreasing resource density. In other words, populations whose size is stabilized by
a process similar to the one advanced for the !Kung San should have less risk in resource poor
environments and greater risk in resource rich environments, assuming the variance in the quantity of
available resources through time is approximately the same in both cases.

Yet in other conditions individual self-interest may lead to run away population growth. In labor
intensive agricultural systems it may be the case that children provide inexpensive labor, hence
individual self-interest may lead to placing high value on pregnancy, per se. So long as the
consequences of a growing population can be distributed to other sectors, such as urban centers
through rural-urban migration, the large scale, societal effects of individual decision making do not
feed back in the same manner and in fact the contrary may be true; a growing population may lead to
agricultural intensification, hence to increased demand for cheap labor, which may be met by
increased number of offspring.

GROUP AND INDIVIDUAL LEVELS

The dynamics between individual action - -which, ultimately, is the source for societal attributes
measured at a more summary level -- and group properties, including societal organization and
cultural systems, is a constant problem that archaeological theorizing has not adequately addressed
(Keene 1983, 1985; but see Reynolds and Zeigler 1979; Johnson 1982; and Reynolds 1984 for formal
accounts that address this issue). The data being analyzed -- the material remains found at sites -- are
summary information, yet if explanation
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requires process defined at the level of individual action as in the !Kung San model for population
equilibrium, then analysis needs to address the linkage between the two levels.

When the linkage is considered, it is often simplified by assuming culture-free properties, such as
maximization of a utility function or minimization of a cost function, without taking into account the
dynamics involved for the optimal solutions to be known to the individual. Or, the net effect of
individual decision making is presumed to lead to an optimal solution defined at the level of the
system. Hence it is assumed that the dynamics of individual decision making and how these dynamics
affect global properties can be ignored. Even when the dynamics are not ignored, it is sometimes
assumed that those past societies that survived sufficiently long to leave a recoverable archaeological
record must be the ones that found optimal, or near optimal solutions, so that the dynamics and
implications of individual decision making can be ignored.

Linear programming, in its archaeological application as a means to account for the resource mix
utilized by a group of persons (e.g., Reidhead 1981; Keene 1979, 1981; Boyle 1986 -- see review by
Reidhead 1979), exemplifies these difficulties most clearly (see Keene 1985 for a critique of linear
programming applications in archaeology). The basic assumption is that a group of persons utilize a
set R = {ri} of n resources, ri ≤ i ≤ n, in such a manner that the total procurement cost, C, to obtain a
basic diet, and possibly other goods, is minimized. Formally, the problem may be stated as follows.
Let the cost function C = C(r1, r2, ..., rn) be given by:

C = c1r1 + c2r2 + ... + cnrn,

where: ci is the cost per unit procured of the ith resource.

Suppose there are constraints

Qj ≤ a1jr1+a2jr2+ ... +anjrn, 1 ≤  j  ≤  m,

where: aij is the amount of the jth good obtained per unit from the ith resource, and

0 ≤ ri, 1 ≤ i ≤ n.

The constraints Qj might represent the minimum quantity of a substance, j, such as a nutrient
obtained from a resource, or a utilized part of an animal such as its skin, required by the group over
some time period. The constraints, 0 ≤ ri, limit possible solutions to non-negative quantities for each
resource. The solution is found by determining the values for r1, r2,..., rn, that minimize C and satisfy
the constraints given in Equations (15) and (16) (see Strang (1986) for a discussion of the logic of
linear and non-linear programming methods).

A detailed application of linear programming as applied to Netsilik Eskimo hunting practices has
been given by Keene (1979), with results that "appear largely congruent with the ethnographic and
historic accounts" (p. 388). Nonetheless, as Keene (1985) has discussed, there are implicit
assumptions underlying the linear program model in its application to hunting and gathering
economics that may not be valid. Two such assumptions that relate directly to the mathematical
specification of a model will be discussed here. These are: (1) no discontinuities are allowed in the
cost function and (2) it is assumed that costs are fixed per unit, i.e., that there is a fixed marginal cost.

The first problem refers to the implicit assumption that the cost per unit decreases to zero as the
quantity procured decreases to zero when a cost function in the form
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is used for the ith resource, ri.  However, Zechenter (1988) has pointed out that costs are often
discontinuous and may include an initial cost that must be borne even when only a single unit is
obtained, such as travel cost of going to a resource location. Averaging these costs over the
resources procured does not eliminate the incongruity and may introduce significant distortions, as
discussed below. Zechenter suggests that a cost function of the form:

0 if ri = 0
Ci = ciri + Ci0 if ri> 0

where: Ci0 is a fixed constant specific to the ith resource,
may be more realistic. Zechenter observes that a variant on linear programming known as integer
programming (see, for example, Schrijver 1986) can incorporate discontinuities of this hind when
finding a solution. integer programming allows the cost function to incorporate resource specific
initial costs by rewriting Equation (14) in the form

C = c1r1 + c2r2+ … + cnrn+ C10y1+ C20y2+ … + Ckoyk,

where: yi  ε {0,1}.

An optimal solution now consists of values for both the ri and the yi that minimize C. Since the yi are
either 0 or 1, these values define which resources are part of the solution set. Other configurations
are also possible: e.g., some resources may share a common initial cost or have alternative means of
procurement with different initial costs, it may be that some resources must be procured in some
minimum amount if at all, diet diversity may be a requirement, and so on. Resource specific
specifications such as these can be incorporated by suitable modification of Equation (19) and/or by
modification of the constraints given in Equations (15) and (16) (Zechenter 1988). Zechenter
considers a variety of alternative scenarios for ethnographic data on resource procurement costs
extrapolated to the preceramic and initial periods of coastal Peru. She concludes that during the early
preceramic period, resource procurement would have focused on terrestrial resources in the coastal
area, with marine resources serving primarily as supplementary resources, while the initial period
would have focused on agricultural resources grown in inland valleys.

The second problem relates to the broader issue of what are the constant and variable aspects of
a system. The linear programming model given in Equations (14) - (16) is static in the sense that the
equations and their parameters are assumed to be fixed. The latter is equivalent to asserting that
resources have a fixed marginal cost, regardless of level of procurement -- hardly a realistic
assumption for resource procurement by hunting and gathering societies. Keene (1979) is aware of
the problem for he comments that the assumption of a fixed cost per unit regardless of quantity
obtained (see Equation (14)) is unrealistic (see also Keene 1985). To resolve the difficulty Keene used
an average cost (p. 378). But an average cost is not the same as the actual cost of obtaining an item,
and the difficulty of using an average for the actual cost can also be seen in the data used by Keene.
For example, Keene notes that whereas the predicted diet would never include polar bear because of
its high average cost due to the cost of deliberately searching for polar bears, nonetheless one would
expect it to be hunted if it were accidentally encountered (p. 391). In other words, restructuring costs
as average costs introduces distortions (Reidhead 1979:561). Further, average costs cannot be
extrapolated to different conditions, such as larger or smaller populations, in order to determine how
diet composition might change as populations expand or decrease. Change in population  size would
be expressed through a multiplicative factor applied to Equation (15) and hence would not affect the
solution found.5
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An alternative to assuming fixed marginal costs for all resources is to estimate the changing
marginal cost for each resource as the amount procured increases. Christenson (1981) followed this
procedure when he examined changing resource mix in archaeological sites ranging in time from
paleoIndian to historic in the Midwest. He comments that "The observed trends are close to the
predicted trends [and] ... indicate a growing population diversifying subsistence by adding more and
more costly food items to feed itself from a fixed resource base" (p. xv).

The optimal resource mix is defined to be one for which the marginal cost of each resource is
the same, given a total quantity satisfactory for the needs of the group. More formally, for the set R =
{ ri } of resources, let the cost function for the ith resource be given by

Ci = Ci(ni),

where: ni is the quantity procured for the ith resource.

(20)

The marginal cost for the ith resource is given by the derivative of the cost function, dCi /dni. Assume
that the second derivative is positive (d2Ci /dni2 ≥ 0), so that the marginal cost curve is concave
upwards, that is, marginal costs increase with increasing ni. The optimal resource mix occurs when the
minimum quantity required, N, is met with resources all of which have the same marginal cost, and at
the least total cost; that is, the set of resources with indexes in the index set I = {i1, i2, . . . , ik} will be
an optimal solution if

and

subject to the condition that

N = Σ ni

          i ε I

dCi /dni = dCj /dnj, for all i, j ε I,

C = Σ Ci(ni )
          i ε I

(22)

(23)

has been minimized. In other words, the resource set indexed by I is an optimal solution if no other
set, J, of resources satisfies equations (21) and (22) with smaller total cost, C, than that given by
Equation (23) for the resource set indexed by I.

The rationale for defining the optimal resource mix in this manner is straightforward. If the
marginal cost for resource r, whether or not it is currently part of the resource mix, is less than the
marginal cost for resource s currently part of the resource mix, then 1 unit of resource r may be
substituted for 1 unit of resource s, thereby keeping fixed the total quantity, N, yet reducing the total
cost, C. In this context, a "unit" does not refer to the resource as a whole, but to some arbitrary unit
such as 1000 Cal. Equilibrium in this substitution process will occur when all resources in the
resource set, I, have equal marginal costs that are also less than the marginal cost of any resource not
in the set I. An implicit assumption is that the difference in marginal costs is known to the actors in
the situation. The assumption is not overly restrictive since the marginal costs refer to the costs
accrued when a unit of resource is obtained and presumably the actors procuring resources are aware
of the costs, such as energy expended, involved.

Note that the solution set, I, is a function of N, the total quantity procured, since marginal cost
curves may not be congruent. Hence, according to this model, an optimal resource mix is not derived
from just knowing the procurement costs of resources, but must also take into account the way in
which procurement costs may vary with the total quantity, N, that is required. That procurement
costs are not fixed for a given resource is
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excluded from the solution found not only in linear programming modes, but in other frameworks as
well, such as optimal foraging theory where arguments often ignore the fact that costs depend on the
intensity with which a resource is exploited.

While Christenson assumed the marginal cost for a resource increases with the quantity
obtained (see also Keene 1979), the definition of the optimal mix given above is not restricted by the
form of the marginal cost curves, although with some curves there might be more than one solution.
Linearity assumptions, continuity in costs, and so on, are no longer part of the analytical solution.
While application to a specific context depends upon estimation of the marginal cost curves -- which
may be a difficult task -- reasonable qualitative assessments may be possible even with limited data as
Christenson (1981) demonstrated in his study.

Though modeling based on marginal costs relaxes the more stringent assumptions underlying
linear programming, other assumptions, which are also part of linear programming, are still necessary.
Two of these are: (1) substitutability of resources and (2) constancy of parameters. The first
assumption refers to the fact that it is assumed that one unit of resource r may replace one unit of
resource s. Substitutability may, ostensibly, be embedded into the model through measuring all
resources via some common currency such as calories. But to do so presumes that all resources were
equivalent within the cultural system in question. Resources are not just a means to provide caloric or
other nutritional requirements, but are heavily endowed with cultural meanings that embed them into
a variety of different contexts, each of which will affect choices made about resources to be procured
(Jochim 1983). For example, the fact that vegetal foods arse generally gathered by women and animals
hunted by men implies that the one kind of food is not equivalent to the other kind. Typically, meat is
redistributed according to various cultural rules regarding who has rights with respect to hunted
animals, whereas gathered foods are generally under the control of the women who has gathered
them. Among the !kung San, a man's obligations to his parent-in-laws were satisfied through providing
meat he hunted, not through gathered foods obtained by his wife (Marshall 1976). Thus, while the
two kinds of foods may be nutritionally substitutable in terms of calories, the same is not true at the
cultural level. But assessing just how much of an impact the cultural side of the equation has on actual
practice is problematic and leads into a topic which is not a part of this review.

The second assumption brings us back to an earlier theme, the presumption that the structural
form and parameters of models are constant. The marginal cost model, while it allows for a changing
resource mix according to changing total demand, assumes constancy in the cost of procuring.
processing and preparing of resources and how these costs are affected by social organization and
level of technology. Yet change in the items considered as food resources, innovation in technology
and restructuring of social organization as these affect obtaining and utilizing resources are precisely
some of the major questions addressed by archaeologists. At the same time, these are aspects that are
generally assumed to be unchanging in most applications of mathematical models.

There is a paucity of models aimed at formally modeling the process of change, though some of
the chapters in the book Transformations: Mathematical Approaches to Cultural Change (Renfrew and
Cooke 1979) are notable exceptions. The lack may be due, in part, to borrowing models from other
disciplines where change is of less concern than it is to anthropologists, in general, and
archaeologists, in particular. In part, it may be due to the fact that formally modeling change is
difficult, and the more traditional modeling tools that have been developed in mathematics are not
always well suited for the indeterminism and uncertainty that is associated with the processes by
which systems change their structure. Dynamic structural modeling is a powerful framework for
analyzing the properties of systems, but does not, in and of itself, provide the means for analyzing the
properties of systems that are self-reflective and capable of both affecting and defining how they are
going to change, as is true of human systems. While human systems are
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constrained by external conditions, nonetheless they have a level of internal organization -- what we
call culture and social organization -- that is, itself. the product of the human components of the
system. Perhaps because culture, except in its material products, is riot directly observable in
archaeological data, and perhaps because the things observable are directly the result of individual
behavior, there has been much emphasis on purported "laws" of behavior as the foundation for the
explanatory arguments that archaeologists are trying to develop. This, I argue, is not likely to succeed.

To the extent that there are "laws" affecting human behavior, they must be due to properties of
the mind that are the consequence of selection acting on genetic information. As a consequence,
"laws" of behavior are inevitably of a different character than laws of physics such as F = ma. The
latter, apparently, is fundamental to the universe itself; behavioral "laws" such as 'rational decision
making' are true only to the extent to which there has been selection for a mind that processes and
acts upon information in this manner. It is not an external property that has prior existence, but exists
-- if at all -- only because the mind is constricted so that sensory information is processed in a way
that leads to actions which we call 'rational'. But given the complexity of the human mind, it is far
from evident that there is any simple linkage between genetic information and the manner in which
the human mind processes information. Without virtually isomorphic mapping from genetic
information to properties of the mind, searching for universal laws of behavior as a means to develop
explanatory models of humans systems in analogy with the role that physical laws have played in
physics in developing explanatory models of the universe is a chimera. It is not so much laws of
behavior that we need, but ModelT models of how complex, information processing, self-reflective,
self-restructuring systems operate, develop and change (e.g., Reynolds and Zeigler 1979; Johnson
1982; Reynolds 1984; Mithen 1987). That there may be commonality in how different groups facing
similar circumstances find solutions is not being questioned; only the emphasis on behavioral "laws"
as the foundation upon which explanatory arguments must ultimately rest. Mathematical modeling
aimed at ModelT kinds of models can be no better than the processes which are being expressed
formally. If the assumed processes are faulty, then it is equally the case that models built upon those
assumptions are faulty when application is made to the empirical context.

CONCLUSION

In the first part of this review I have argued that there are two different, but related kinds of
models relevant to explanatory arguments: ModelD models aimed at expressing idealization of
empirical conditions and ModelT models aimed at expressing theoretically and abstractly defined
relationships. These two modalities do not, of course, exhaust the full sense in which models have
been used in archaeology. Voorrips (1987) discusses four types of models that have been used in
archaeology, two of which correspond to the ModelT and ModelD given here. The distinction relates
to both the domain for which the model is constructed -- the empirical versus the theoretical domain
-- and the nature of confirmation -- empirical test versus logical consistency with posited
relationships. Different methods are typically employed as well. Statistical methods are paramount
with ModelD models as the goal is to establish congruency between model and data. whereas
symbolic, logical arguments are paramount with ModelT models as the goal is to express the deduced
consequences of relationships defined abstractly. Neither kind of modeling has priority as scientific
arguments involve both modalities. Scientific explanation, in this framework, can be viewed as
demonstrating isomorphism between the two kinds of models for the situation in question. For there
to be explanation, there must be both valid idealization of real world phenomena to isolate those
properties for which explanation is desired, and there must be an embedding of the relationships
found in the idealized data into a suitable
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theory in order to demonstrate the relationships as a deducible consequence given the structuring
properties around which the theory is constructed. In terms of practice, however, most
"mathematical" modeling in archaeology has utilized ModelD constructs (Voorrips 1987; Cowgill
1955) and less systematic work has been done on ModelT constructs. As Cowgill (1986:371) has
commented: "[archaeological] theory itself is rarely couched in mathematical terms".

Mathematical formalism applied to archaeological concepts as an end in itself is a sterile
exercise. Mathematical/formal representation aimed at providing a symbolic framework wherein the
logic of principles said to be structuring a domain cam be examined and implications determined is,
however, a means to extend archaeological reasoning to more subtle. and less obvious properties of
those principles. When there is concordance between concept and representation, the result can only
be a fuller and deeper understanding of the phenomena under the purview of the archaeologist. This
is the promise held out by the application of mathematical constructs to archeological problems.

NOTES

2.

3.

4.

5.

The first part of this review is a revised version of a paper given at the symposium, Theoretical Frameworks for
the use of Mathematical Methods in Archaeology, held as part of the eleventh Congress of the Union
Internationale des Sciences Préhistoriques et Protohistoriques, August 31 - September 5, 1987. Funds for
attending the Congress were provided by the UCLA Academic Senate.

The review makes no attempt to be exhaustive of studies that have applied mathematical formalism in the sense
of extending archaeological reasoning. In particular, recent work on analyzing decorative patterns using pattern
mathematics (e.g., Zaslow and Dittert 1977; Washburn and Crowe 1988) and artifact design based on formal
grammars (e.g., Read 1986) will not be considered here. In addition, earlier examples of the application of
mathematical formalism (e.g. Read 1974; Zubrow 1975) are not considered.

Since the term 'successor' is a primitive, it has no defnition in the axiomatic system. Hence any definition
consistent with the axioms is permissible. The intuitive sense in which it is usually taken corresponds to the idea
that any set of objects has associated with it a quantity representing the number of things in the set. If a set is
augmented by one object, then its new quantity would be the successor to the quantity associated with the set
prior to its augmentation (see also Read 1987).

Or, at least complete characterization can be made for linear dynamical systems. Non-linear systems are more
complex and difference equations can exhibit "chaotic" behavior even when deterministic. Trajectories for the
nonlinear system may be heavily affected by minor perturbations, hence making prediction of future states from
the structural equations and initial conditions problematic. See Strang (1986:471-507) for a comparative
discussion of linear, nonlinear and discrete systems.

Linear programming does take into account marginal costs through what are called shadow prices (see discussion
by Keene 1979, 1985, and Reidhead 1981), but shadow prices are less of a global consideration of marginal cost
than an analysis of the local effects of marginal cost on the optimal solution.

6. There are notable exceptions such as the Tiwi who also included certain animals as part of the resources obtained
by women (Goodale 1971).

1.
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