## Soc 195B 04W

## EXAMPLES OF DIRECT STANDARDIZATION

This annotated Chip output file illustrates the use of the "Standardize" command using a file named "status98_freq.chp" that has the same information as "status $98 . c h p$." (The file named "status $98 . c h p$ " is formatted in such a way that the standardization command does not work with it, but other commands do work with it.)

I have placed a self-extracting file named "status98_freq.sfx" on the course web site. It may be found in the "Index of Course Materials."

1. To begin this session I opened a log file named "status98_21oct02.log."
2. I next opened the file "status 98 _freq.chp."
```
Status98 (Status attainment model; source: '96 & '98 GSS; Full-time workers
only)
N = 2195
```

3. Here is the result of requesting the tabulation of respondent's income by father's occupational prestige. Clearly there is an association between the two variables.

| Income/Papres |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
|  | Low | Medium | High | All |
|  |  |  |  |  |
| $\$ 35 \mathrm{~K}+$ | 32.8 | 34.0 | 44.2 | 37.3 |
| $\$ 17.5 \mathrm{~K}-\$$ | 43.1 | 42.6 | 39.8 | 41.7 |
| $<\$ 17.5 \mathrm{~K}$ | 24.1 | 23.4 | 16.1 | 21.0 |
| $100 \%=$ | 677 | 721 | 797 | $\mathrm{~N}=$ |

4. I next issued commands to percentage respondent's income by father's occupational prestige, controlling for respondent's education. This makes for a very large table, consisting of four conditional subtables:


5. It is difficult to summarize, much less interpret such a complex table, yet it is highly desirable to do so. Fortunately, there are tools to deal with this situation. The simplest of these is known as "direct standardization." We will henceforth refer to this tool as "standardization," since we will not be using variants such as "indirect standardization."

We will use standardization to form a particular type of weighted average over conditional subtables, so that we can summarization controlled associations between pairs of variables. Before explaining the calculations, I want to illustrate how you can use Chip to produce standardized results.

Although you can't see it in this transcript file, after extracting the income by father's occupational prestige table within each educational level (i.e., controlling for education), I issued the "standardize" command. That produced the following output:

```
Status98 (Status attainment model; source: '96 & '98 GSS; Full-time workers
only)
File
Causal order:
    Ed -> Inco* -> Papr* -> Regi* -> Race* -> Sex* -> Age* -> Marr* -> Sibs*
    4 x x m
```

$N=2197$
6. The above output should be read as telling us that until we tell it otherwise, Chip will standardize all associations for educations (note the lack of an asterisk next to "Ed"). (Notice that, unfortunately, the Nis 2,197
and not 2,195 . This is due to internal rounding errors in Chip. In the mathematics of standardization, the $N$ stays exactly the same.)

Still, Chip will do nothing until you give it the next command. The command is not printed in the log file, but it was simply "frequency," which produced the following table of frequencies standardized for education:

|  | Low | Medium | High | 100\% $=$ |
| ---: | :---: | :---: | :---: | :---: |
| $\$ 35 \mathrm{~K}+$ | 254 | 248 | 317 | 820 |
| $\$ 17.5 \mathrm{~K}-\$$ | 282 | 303 | 331 | 917 |
| $<\$ 17.5 \mathrm{~K}$ | 147 | 163 | 149 | 461 |
| $100 \%=$ | 684 | 715 | 798 | $\mathrm{~N}=$ |

7. I presented these frequencies so that you could see that the number of respondents remains the same under standardization. The number of individuals in each father's occupational prestige category also remains the same.

Next I asked for "percent down":

|  | Low | Medium | High | All |
| ---: | :---: | :---: | :---: | :---: |
| $\$ 35 \mathrm{~K}+$ | 37.2 | 34.7 | 39.8 | 37.3 |
| $\$ 17.5 \mathrm{~K}-\$$ | 41.2 | 42.4 | 41.5 | 41.7 |
| $<\$ 17.5 \mathrm{~K}$ | 21.6 | 22.9 | 18.7 | 21.0 |
| $100 \%=$ | 684 | 715 | 798 | $\mathrm{~N}=$ |

8. The above percentage table summarizes the association between respondent's income and father's occupational prestige, controlling respondent's education. It shows that there is virtually no association.
9. Now let's consider what happens to the income by education association, controlling father's occupational prestige. First, let's remind ourselves of the uncontrolled association. To obtain that, I need to "mouse" through "standard|restore". Then I issue the commands for the uncontrolled table.
```
Income/Ed
```

|  | $<12 \mathrm{yrs}$ | 12 yrs | $13-15 \mathrm{yrs}$ | $16+\mathrm{yrs}$ | All |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $\$ 35 \mathrm{~K}+$ | 16.0 | 24.3 | 32.6 | 53.8 | 37.3 |
| $\$ 17.5 \mathrm{~K}-\$$ | 41.1 | 47.8 | 45.5 | 35.2 | 41.7 |
| $<\$ 17.5 \mathrm{~K}$ | 42.9 | 27.9 | 21.9 | 11.0 | 21.0 |
| $100 \%=$ | 175 | 646 | 494 | 880 | $\mathrm{~N}=$ |

10. Here comes the table controlling for father's occupational prestige:

11. Again, such a table is difficult to summarize and interpret. We standardize on father's occupational prestige.

Status98 (Status attainment model; source: '96 \& '98 GSS; Full-time workers only)
File
Causal order:

```
Papre -> Inco* -> Ed* -> Regi* -> Race* -> Sex* -> Age* -> Marr* -> Sibs*
\begin{tabular}{llllllllllllllll} 
& x & 3 & x & 4 & x & 4 & x & 2 & x & 2 & x & 3 & x & 3 & x
\end{tabular}
```

$N=2195$
12. Next, we percentage the table that Chip has been holding in memory for us:

|  | $<12 \mathrm{yrs}$ | 12 yrs | $13-15 \mathrm{yrs}$ | $16+\mathrm{yrs}$ | All |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $\$ 35 \mathrm{~K}+$ | 17.8 | 25.3 |  |  |  |
| $\$ 17.5 \mathrm{~K}-\$$ | 40.9 | 47.5 | 42.6 | 52.6 | 37.3 |
| $<\$ 17.5 \mathrm{~K}$ | 41.3 | 27.2 | 22.0 | 35.6 | 41.7 |
| $100 \%=$ | 173 | 645 | 496 | 11.8 | 21.0 |
| 1081 | $\mathrm{~N}=$ | 2195 |  |  |  |

13. The standardized table can and should be compared to the original, uncontrolled table:

| Income/Ed |  |  |  |  |  |
| ---: | :---: | :---: | :---: | ---: | ---: |
|  | <12yrs | $12 y r s$ | $13-15 y r s$ | $16+y r s s$ | All |
| $\$ 35 \mathrm{~K}+$ | 16.0 | 24.3 | 32.6 | 53.8 | 37.3 |
| $\$ 17.5 \mathrm{~K}-\$$ | 41.1 | 47.8 | 45.5 | 35.2 | 41.7 |
| $<\$ 17.5 \mathrm{~K}$ | 42.9 | 27.9 | 21.9 | 11.0 | 21.0 |
| $100 \%=$ | 175 | 646 | 494 | 880 | $\mathrm{~N}=$ |

2195
14. Standardization becomes even more helpful when we want to control for more than one variable. Consider the income by education association, controlling for race and region.

To obtain the 4-way tabulation, I need to "restore" the data to their pre-standardized state. Then I issue the appropriate table, control, and percentaging commands:

```
Race = White
Region = Northeast
            <12yrs 12yrs
            $35K+ 21.2 29.0
    $17.5K-$ 39.4
        <$17.5K 39.4
            100%= 33 100
Race = White
Region = Midwest
                        <12yrs
                    12yrs
                    13-15yrs
                    16+yrs
                            All
            $35K+ 12.
        $17.5K-$ 45.
        <$17.5K 41.7
            100%=
            100%=
                    50.0
        21.0
```



```
        45.9
        10.8
        53.1
        41.2
        35.2
        42.0
        11.7
        16.8
                        100
                7 4
                            1 4 5
                            N =
                            352
            12.5
                    22.7
                            33.6
                            55.6
                            37.2
                    49.7
                                4
                                55.6
        42.8
            27.6
        20.7
        34.3
        10.1 20.0
Race = White
Region = South
            <12yrs 12yrs 13-15yrs 16+yrs All
            $35K+
        $17.5K-$
                        13.4
                    24.1
                        25.3
                            52.4
                            33.9
            13.
                    *
                            52.
                                44.4
        <$17.5K
            40.3
                49.2
                47.9
        26.7
            37.8
            26.6
        9.8
                            21.7
```



| $\begin{aligned} & \text { Race = White } \\ & \text { Region = West } \end{aligned}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $<12 \mathrm{yrs}$ | 12yrs | 13-15yrs | 16+yrs |  | All |  |
| \$35K+ | 18.2 | 29.8 | 42.2 | 55.9 |  | 45.7 |  |
| \$17.5K-\$ | 36.4 | 44.0 | 38.9 | 32.4 |  | 36.4 |  |
| <\$17.5K | 45.5 | 26.2 | 18.9 | 11.7 |  | 17.9 |  |
| 100\%= | 22 | 84 | 90 | 222 | $\mathrm{N}=$ |  | 418 |
| Race = Black |  |  |  |  |  |  |  |
| Region $=$ Northeast |  |  |  |  |  |  |  |
|  | $<12 \mathrm{yrs}$ | 12 yrs | 13-15yrs | $16+y r s$ |  | All |  |
| \$35K+ | 33.3 | 18.8 | 27.3 | 16.7 |  | 21.4 |  |
| \$17.5K-\$ | 33.3 | 50.0 | 45.5 | 66.7 |  | 52.4 |  |
| <\$17.5K | 33.3 | 31.3 | 27.3 | 16.7 |  | 26.2 |  |
| 100\%= | 3 | 16 | 11 | 12 | $\mathrm{N}=$ |  | 42 |
| Race = Black |  |  |  |  |  |  |  |
| Region = Midwest |  |  |  |  |  |  |  |
|  | $<12 y r s$ | 12yrs | 13-15yrs | 16+yrs |  | All |  |
| \$35K+ | 33.3 | 11.1 | 22.7 | 66.7 |  | 32.8 |  |
| \$17.5K-\$ | 16.7 | 50.0 | 45.5 | 22.2 |  | 37.5 |  |
| <\$17.5K | 50.0 | 38.9 | 31.8 | 11.1 |  | 29.7 |  |
| 100\%= | 6 | 18 | 22 | 18 | $\mathrm{N}=$ |  | 64 |
| Race = Black |  |  |  |  |  |  |  |
| Region $=$ South |  |  |  |  |  |  |  |
|  | $<12 y r s$ | 12yrs | 13-15yrs | $16+\mathrm{yrs}$ |  | All |  |
| \$35K+ | 11.1 | 21.4 | 22.6 | 42.4 |  | 25.8 |  |
| \$17.5K-\$ | 27.8 | 33.3 | 48.4 | 42.4 |  | 38.7 |  |
| <\$17.5K | 61.1 | 45.2 | 29.0 | 15.2 |  | 35.5 |  |
| 100\% = | 18 | 42 | 31 | 33 | $\mathrm{N}=$ |  | 124 |
| Race $=$ Black |  |  |  |  |  |  |  |
| Region $=$ West |  |  |  |  |  |  |  |
|  | <12yrs | 12 yrs | 13-15yrs | $16+y r s$ |  | All |  |
| \$35K+ | . 0 | . 0 | . 0 | 83.3 |  | 27.8 |  |
| \$17.5K-\$ | 100.0 | 50.0 | 75.0 | . 0 |  | 44.4 |  |
| <\$17.5K | . 0 | 50.0 | 25.0 | 16.7 |  | 27.8 |  |
| 100\% $=$ | 2 | 6 | 4 | 6 | $\mathrm{N}=$ |  | 18 |

## 15. Next I standardize on race and region.

```
Status98 (Status attainment model; source: '96 & '98 GSS; Full-time workers
only)
File
Causal order:
```


$\mathrm{N}=2195$
16. And then percentage the standardized table.

|  | $<12 \mathrm{yrs}$ | 12 yrs | $13-15 \mathrm{yrs}$ | $16+\mathrm{yrs}$ | All |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $\$ 35 \mathrm{~K}+$ | 16.9 | 25.0 | 32.7 | 53.0 | 37.3 |
| $\$ 17.5 \mathrm{~K}-\$$ | 40.8 | 47.5 | 45.8 | 35.4 | 41.7 |
| $<\$ 17.5 \mathrm{~K}$ | 42.3 | 27.5 | 21.5 | 11.6 | 21.0 |
| $100 \%=$ | 174 | 645 | 492 | 883 | $\mathrm{~N}=$ |
| 2195 |  |  |  |  |  |

17. Now let's look at the income/race association-uncontrolled:

Income/Race

|  | White | Black | All |  |
| ---: | :--- | :---: | ---: | :--- |
| $\$ 35 \mathrm{~K}+$ | 38.6 | 27.0 | 37.3 |  |
| $\$ 17.5 \mathrm{~K}-\$$ | 41.8 | 41.1 | 41.7 |  |
| $<\$ 17.5 \mathrm{~K}$ | 19.6 | 31.9 | 21.0 |  |
| $100 \%=$ | 1947 | 248 | $\mathrm{~N}=$ | 2195 |

18. Controlling for education:

| Ed $=<12 \mathrm{yrs}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | White | Black |  | All |  |
| \$35K+ | 15.8 | 17.2 |  | 16.0 |  |
| \$17.5K-\$ | 43.2 | 31.0 |  | 41.1 |  |
| <\$17.5K | 41.1 | 51.7 |  | 42.9 |  |
| 100\%= | 146 | 29 | $\mathrm{N}=$ |  | 175 |
| $\mathrm{Ed}=12 \mathrm{yrs}$ |  |  |  |  |  |
|  | White | Black |  | All |  |
| \$35K+ | 25.4 | 17.1 |  | 24.3 |  |
| \$17.5K-\$ | 48.8 | 41.5 |  | 47.8 |  |
| <\$17.5K | 25.9 | 41.5 |  | 27.9 |  |
| 100\%= | 564 | 82 | $\mathrm{N}=$ |  | 646 |


|  | White | Black |  | All |
| :---: | :---: | :---: | :---: | :---: |
| \$35K+ | 34.3 | 22.1 |  | 32.6 |
| \$17.5K-\$ | 45.1 | 48.5 |  | 45.5 |
| <\$17.5K | 20.7 | 29.4 |  | 21.9 |
| 100\%= | 426 | 68 |  |  |
| $\mathrm{Ed}=16+\mathrm{yrs}$ |  |  |  |  |
|  | White | Black |  | All |
| \$35K+ | 54.3 | 47.8 |  | 53.8 |
| \$17.5K-\$ | 35.0 | 37.7 |  | 35.2 |
| <\$17.5K | 10.7 | 14.5 |  | 11.0 |
| 100\%= | 811 | 69 | $\mathrm{N}=$ |  |

19. Standardizing on education:

Status98 (Status attainment model; source: '96 \& '98 GSS; Full-time workers only)

File
Causal order:

$\mathrm{N}=2195$
20. Percentaging the standardized association:

|  | White | Black | All |
| ---: | :---: | :---: | ---: |
| \$35K+ | 38.2 |  |  |
| $\$ 17.5 \mathrm{~K}-\$$ | 41.8 | 30.0 | 37.3 |
| $<\$ 17.5 \mathrm{~K}$ | 19.9 | 29.9 | 41.7 |
| $100 \%=$ | 1951 | 244 | $\mathrm{~N}=$ |
|  |  |  | 21.0 |

2195

