MINIMUM WAGE AND MEXICAN AND CENTRAL AMERICAN INFUX

ELSVA VON SCHEVEN

IVAN LIGET

University of California, Los Angeles

ABSTRACT: In the 1990s, thirteen American states raised their minimum wage above the federal level, while the other thirty-five contiguous states retained the lower federal standard. An increased minimum wage should reduce employment among the least-paid workers, and therefore reduce their inflow. Using individual-level data from the 3% Public Use Samples of the 2000 U.S. Census of Population, this research examines the effects of forty-eight contiguous U.S. states' minimum wage policies on the settlement choices of recently arrived Mexican and Central American immigrants. As predicted, the authors find that these Mexican and Central American immigrants were less likely to settle in states that implemented above-federal minimum wages during the 1990s as opposed to settling in states that retained the federal-level minimum wage during that decade. Conversely, states' minimum wage policies did not affect the inflow of recent immigrants from other countries. These results suggest that states can influence the inflow of low-wage immigrants by adjusting their minimum wage.

Keywords: Mexicans, minimum wage, states, Central Americans, immigration.

In the 1990s, demographers began to report a surprising finding. After seven decades of routinely populating just three states (California, Texas, and Illinois), and almost ignoring the forty-seven other states, Mexican immigrants had begun to settle outside their traditional core states (Bean et al. 2007; Bump, Lowell and Pettersen 2005; Frey 2003; Hernández-León and Zúñiga 2002; 2005; Light and von Scheven 2008; Passel and Cohn 2009; Schachter 2003). As late as 1980, California, Texas, and Illinois had contained 83 percent of all immigrant Mexicans in the United States. By the year 2000, however, the three traditional states contained only 70 percent of all foreign-born Mexicans, and by 2009 only 63 percent. As the percentage share of these three states declined after 1980, the total number of Mexican immigrants in the United States continually increased, reaching 11,711,103 in 2009. As a result of these twin

Address correspondence to Ivan Light, Box 951861, Los Angeles, CA 90095; e-mail: light@soc.ucla.edu.
State Proportion of the Mexican-Born Population in the United States

And the 15 Metropolitan Areas* with the Largest Proportions of Mexican-Born

![Map showing state proportions of Mexican-born population in the United States.](image)

FIGURE 1
State Proportion of the Mexican-Born Population in the United States

changes, the increase in Mexican numbers and the decreasing share of the top three states, approximately 4.3 million Mexicans resided outside the top three reception states in 2009, and 7.3 million within them. Of the 4.3 million foreign-born Mexicans residing in states of nontraditional settlement in 2009, approximately 53 percent may be attributed to defection from the top three states, and 47 percent to increased influx since 1980 (Light 2006). Figure 1 displays the location of Mexican immigrants among the forty-eight contiguous states in 2008.

Explaining Mexican Dispersion

Efforts to explain the dispersion of Mexicans throughout the United States have addressed many causes, including saturation and defection from their traditional settlement states (Light 2006; Light and Johnston 2009; Light and von Schewen 2008), enhanced enforcement of labor laws (Light 2006), federal policy shocks (Massey, Durand, and Malone 2002; Odem and Lacy 2009:xvi), the Mexicans’ quest for improved quality of life (Fennelly 2006; Sum and Singer 2002), labor recruitment in Mexico (Donato and Banister 2008; Krisman 2000), and employment growth in nontraditional settlement states (Parrado and Kandel 2008). Of course, these explanations are not mutually exclusive, and the problem now arises of examining and integrating them.

To this end, this article critically examines the claim that growth of the low-wage job supply in nontraditional settlement states attracted Mexican labor to those states (Kritz and Gurak 2010:541). This proposition has so many endorsers (Hirschman and Massey 2008:4;10; Leach and Bean 2008:55; Parrado and Kandel 2008:119; Odem and Lacy 2009:xiv; Portes 2009:4; Rosenbaum and Brick 2011:2) that it represents the single strongest point of agreement among researchers. We agree with the claim that low-wage job growth in nontraditional states attracted Mexican and Central American (MEXCA) immigrants to them. Our reservation concerns additional, unexamined, and ignored sources of job growth.

As matters stand, the presumption exists that the new low-wage jobs in most packing, manufacturing, construction, domestic service, and retail distribution were the simple, unadorned consequence of the operation of the market economy in which employers relentlessly seek to lower labor costs. Granting that this economic context existed, we ask an additional question that others have not yet raised: To what extent did the attractive pull of new jobs reflect simple market readjustments, or low-wage political regimes dependent on state labor laws, or some combination of the two? That is, is it possible that market-derived cost pressures drove the low-wage jobs mainly to states whose laxer labor codes tolerated low-wage firms. Indeed, that conclusion seems most likely as the lowest wage jobs are legal in states that tolerate them and illegal elsewhere. Therefore, we propose that many low-wage jobs that attracted Mexican and Central American immigrants to nontraditional settlement states owed their existence to more poverty-tolerant political regimes in those nontraditional states as well as to legal cost pressures and that the jobs’ attractive capability was simultaneously economic and political, not just economic. This is the basis for our hypothesis. The null hypothesis posits that the relatively high growth of low-wage jobs in nontraditional settlement states was independent of states’ labor regimes, and thus, that state’s minimum wage (MW) policies had no effect on the settlement choices of recently arrived MEXCA immigrants.

Specifying Our Hypothesis

Federal law establishes a MW, which is periodically increased, and the federal law requires all states to mandate at least this level of wages, but federal law permits states to set a MW higher than the federal. As a result, American states can vary greatly in the MW they require employers to pay. Employers of low-wage labor lawfully reduce their wages bill when they operate in a federal-level MW state rather than one that imposes a higher-than-federal MW. Of the forty-eight contiguous states that we analyzed, thirteen implemented higher-than-federal MWs for at least 1 year during the 1990s, while the rest (thirty-five) never implemented above-federal MWs during the decade (Table 1). We propose that growth and retention of low-wage employment was more extensive in states that retained the lower, federal MW rather than in states that required a higher-than-federal
TABLE 1
State’s Minimum Wages During the 1990s (MW-90s) and 2000 Geographic Distribution of Mexican and Non-Mexican Immigrants Aged 18-65 Who Arrived Between 1995 and 1999

<table>
<thead>
<tr>
<th>State</th>
<th>MW-90s</th>
<th>% MEXCA</th>
<th>% Non-MEXCA</th>
<th>State</th>
<th>MW-90s</th>
<th>% MEXCA</th>
<th>% Non-MEXCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>0</td>
<td>0.50</td>
<td>0.59</td>
<td>Nebraska</td>
<td>0</td>
<td>0.40</td>
<td>0.49</td>
</tr>
<tr>
<td>Arizona</td>
<td>0</td>
<td>4.20</td>
<td>4.69</td>
<td>Nevada</td>
<td>0</td>
<td>1.60</td>
<td>1.53</td>
</tr>
<tr>
<td>Arkansas</td>
<td>0</td>
<td>0.50</td>
<td>0.48</td>
<td>New Hampshire</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>California</td>
<td>1</td>
<td>26.17</td>
<td>27.55</td>
<td>New Jersey</td>
<td>1</td>
<td>2.24</td>
<td>2.51</td>
</tr>
<tr>
<td>Colorado</td>
<td>0</td>
<td>2.75</td>
<td>2.86</td>
<td>New Mexico</td>
<td>0</td>
<td>0.55</td>
<td>0.58</td>
</tr>
<tr>
<td>Connecticut</td>
<td>1</td>
<td>0.55</td>
<td>0.71</td>
<td>New York</td>
<td>0</td>
<td>3.90</td>
<td>3.57</td>
</tr>
<tr>
<td>Delaware</td>
<td>0</td>
<td>0.16</td>
<td>0.14</td>
<td>North Carolina</td>
<td>0</td>
<td>4.91</td>
<td>4.21</td>
</tr>
<tr>
<td>Florida</td>
<td>0</td>
<td>4.55</td>
<td>4.99</td>
<td>North Dakota</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Georgia</td>
<td>0</td>
<td>4.58</td>
<td>4.89</td>
<td>Ohio</td>
<td>0</td>
<td>0.45</td>
<td>0.43</td>
</tr>
<tr>
<td>Idaho</td>
<td>0</td>
<td>0.30</td>
<td>0.32</td>
<td>Oklahoma</td>
<td>0</td>
<td>0.92</td>
<td>0.95</td>
</tr>
<tr>
<td>Illinois</td>
<td>0</td>
<td>5.01</td>
<td>4.90</td>
<td>Oregon</td>
<td>1</td>
<td>1.57</td>
<td>1.61</td>
</tr>
<tr>
<td>Indiana</td>
<td>0</td>
<td>1.32</td>
<td>1.28</td>
<td>Oregon</td>
<td>0</td>
<td>0.56</td>
<td>0.52</td>
</tr>
<tr>
<td>Iowa</td>
<td>1</td>
<td>0.40</td>
<td>0.48</td>
<td>Rhode Island</td>
<td>1</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>Kansas</td>
<td>0</td>
<td>0.80</td>
<td>0.85</td>
<td>South Carolina</td>
<td>0</td>
<td>0.99</td>
<td>0.91</td>
</tr>
<tr>
<td>Kentucky</td>
<td>0</td>
<td>0.48</td>
<td>0.53</td>
<td>South Dakota</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Louisiana</td>
<td>0</td>
<td>0.20</td>
<td>0.24</td>
<td>Tennessee</td>
<td>0</td>
<td>1.15</td>
<td>1.16</td>
</tr>
<tr>
<td>Maine</td>
<td>1</td>
<td>0.01</td>
<td>0.12</td>
<td>Texas</td>
<td>0</td>
<td>17.14</td>
<td>17.32</td>
</tr>
<tr>
<td>Maryland</td>
<td>0</td>
<td>0.96</td>
<td>0.86</td>
<td>Utah</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>1</td>
<td>5.55</td>
<td>5.36</td>
<td>Vermont</td>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Michigan</td>
<td>0</td>
<td>0.10</td>
<td>0.14</td>
<td>Virginia</td>
<td>0</td>
<td>1.75</td>
<td>1.86</td>
</tr>
<tr>
<td>Minnesota</td>
<td>1</td>
<td>0.76</td>
<td>1.34</td>
<td>Washington</td>
<td>1</td>
<td>1.55</td>
<td>2.51</td>
</tr>
<tr>
<td>Mississippi</td>
<td>0</td>
<td>0.22</td>
<td>0.16</td>
<td>West Virginia</td>
<td>0</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Missouri</td>
<td>0</td>
<td>0.40</td>
<td>0.50</td>
<td>Wisconsin</td>
<td>0</td>
<td>0.92</td>
<td>0.73</td>
</tr>
<tr>
<td>Montana</td>
<td>0</td>
<td>0.04</td>
<td>0.08</td>
<td>Wyoming</td>
<td>0</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>100.00</td>
<td>100.00</td>
<td></td>
<td>0</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

MW-90s is a dummy variable whose value is 0 when a state did not implement above-federal minimum wages and whose value is 1 when a state did implement above-federal minimum wages for at least 1 year during the 1990s. Source: U.S. Bureau of Labor Statistics.

MW; thus, we hypothesize that Mexican immigrants who arrived between 1995 and 1999 were more likely to settle in states that never implemented above-federal MWs during the 1990s as opposed to states that did implement above-federal MWs for at least 1 year during that decade.

Already available evidence seconds the plausibility of this hypothesis. First, our hypothesis is compatible with and even implied by the very research evidence that expands and supports the jobs growth explanation of Mexican dispersion. All agree that Mexican immigrants worked overwhelmingly in low-wage jobs located in the South and Mountain regions (Devere 2005; Lurita and Waldinger 2010). Additionally, Parrado and Kandel (2006) acknowledge that low wages dropped even lower after Mexicans arrived to undertake the work the native-born had rejected. Of ten nontraditional Mexican settlement states (Arizona, Arkansas, Colorado, Georgia, Iowa, Kansas, Louisiana, Nevada, Utah, and Tennessee) in which Donato et al. (2008:78) reported strong growth of Mexican immigration, seven maintained a low, federal MW during the 1990s (Table 1). In 2008, 3.6 percent of hourly workers in those ten states earned the state’s legal MW compared to 3.0 percent in the United States and 1 percent in California, the lowest of fifty states (U.S. Bureau of Labor Statistics 2009:Table 3).

Some literature also affords direct support for our hypothesis. Light (2006) attributed the deflection of Mexican immigrants from California in the 1990s as much to the enhanced enforcement of the labor code as to economic saturation. California still has the highest standard of labor law enforcement of any American state (Bernhardt, McGrath, and DeFilippis 2007:24). If California reduced the supply of low-wage jobs by strictly enforcing the labor code, the exact converse would be the ability of states with low and lardy enforced labor standards to attract low-wage immigrant labor. Moreover, Light (2006:103) noted that California’s MW law was 12 percent higher than the federal MW in 2000, and inferred the possibility that California’s high state MW had reduced the growth of low-wage jobs in California relative to states that retained the lower federal MW. If a high MW restrains the growth of low-wage employment, then a low MW should enhance that growth.

New evidence shows that labor standards in the states to which Mexican immigrants gravitated are extremely low, and in the specific case of the meat and poultry processing plants of Arkanas, Nebraska, and North Carolina, the standards are so low and law enforcement so lax that Human Rights Watch declared these states in violation of “international human rights” (Compa 2004:2; Silverzfill 2009). Mohr (2009:60) regrets the “distressing low wages and dangerous working conditions” in the meat processing industry. Stueve (2009:95–96; also Bacon 2012) denounces “unjust labor practices” in the poultry industry.

Because more than half of the Mexican workers were undocumented, the Supreme Court’s 2002 decision in Hoffman Plastics Compounds versus NLRB virtually stripped Mexican immigrants of the right to unionize. Employers took advantage of this situation to introduce harsher labor discipline.5 So serious, systemic, and protracted were these infractions of labor law that the Consul General of Mexico intervened on behalf of Mexican workers in Georgia, compelling the U.S. Department of Labor to acknowledge its obligation “...to promote [Mexican] workers’ rights in protecting their wages, particularly with regards to reducing violations of the minimum wage, overtime, record keeping, child labor, safe housing, and transportation provisions of the laws and regulations administered and enforced by WHT...” This information we obtained from the U.S. Department of Labor’s (2011) compact with the Mexican consulate.

Weak labor standards appear to attract low-wage jobs just as strong labor standards repel them. Weak and strong labor standards are opposite ends of the same variable. Kerwin and McCabe (2011:23) find that lax or unenforced labor standards drive “unauthorized and other low-wage immigrants” to states that tolerate those conditions. Additionally, they find “strong evidence” that low-wage immigrants cluster in certain industries and firms that routinely violate labor standards.
Notorious among such industries are the slaughterhouses, canneries, domestic service, home health care, and petroleum and gas refineries that gave employment to many immigrant Mexicans and Central Americans.

Only one prior study has specifically addressed the possibility that states’ MW policies encouraged the dispersion of low-skilled immigrants around the United States. Studying teenagers and native-born minorities, Orenius and Zavodny (2008:567) unexpectedly discovered an inverse relationship between increases in a state’s real MW and subsequent reductions in that fraction of a state’s population comprised of low-skilled, adult immigrants. When the real MW rose, the proportion of low-skilled adult immigrants in the state labor force declined. This result implied emigration of the less-skilled adults following increases in state MWs. Orenius and Zavodny (2008) also observed that “migration-induced changes” in population composition might explain why higher MWs in states boosted average wages among low-skilled immigrants without creating adverse employment or hours effects on natives. However, these authors did not examine actual migratory behavior, specific nationalities, or social network effects.

Theoretical Agenda

MW levels only affect the employability of the lowest paid employees. MEXCA workers were the lowest paid employees in U.S. labor markets, so changes in MW levels should have affected MEXCA more than other workers. On average, Mexican immigrants earn less than other immigrants, who themselves earn less than native-born workers (Pew Hispanic Center 2009; Rosenbaum and Brick 2011:21; Table 1). Whatever their national origin, recent immigrants earn less than co-ethnic immigrants who have been longer in the United States (Light and Johnston 2009:Table 1). Indeed, recent immigrants in general occupied a lower occupational status even more than all Mexican immigrants, two-thirds of whom are not recent immigrants (Card 2001:34; Pew Hispanic Center 2009:Table 1). Similarly, among MEXCA immigrants, the most recently arrived earn less than compatriots who have been in the United States longer (Myers 2007:119). Although the educational levels of the settled and the recently arrived are comparable, recent Mexican immigrants earned less than compatriots who arrived earlier (Bean and Stevens 2003:Table 6.5). Compared to longer resident compatriots, recently arrived Mexican immigrants lack seniority on their jobs, cultural familiarity with American society, and English language proficiency. These problems should, on average, render recently arrived MEXCA immigrants more vulnerable to diminished employment chances in the aftermath of increases in a state’s MW than any other ethno-racial category. Therefore, recent MEXCA immigrants should be more responsive to state MW laws than recent immigrants from other countries (non-MEXCA immigrants).

The MW as a Variable

The MW is an attractive variable because its level is easily and unambiguously ascertained in every state and in every year. Additionally, states with a high MW tend to have stronger labor standards (safety, health, child labor, etc.) than states with lower MWs because state MW laws tend to mirror states’ “political leanings” (Ford, Minor, and Owens 2012). Of twenty-two states that had enacted anti-union “right-to-work” laws in 2008, seventeen also displayed a higher than average proportion of hourly workers who earned at or below the federal MW in that year. Eisenach et al. (2010) introduced a measure of state regulatory environment based on thirty-four characteristics of each state’s labor law and employment policies. The authors called their measure the Employment Regulation Index (ERI). These thirty-four characteristics they grouped into six categories. A state’s MW was one of these thirty-four categories; a state’s labor law enforcement climate was another. Eisenach scored the fifty states high, medium, and low in respect to regulatory interventions in labor and employment. When the states’ ERI scores are compared with their MW policies, the states with the lowest MW levels scored an average of 1.7 in ERI, those that implemented medium levels of MWs scored a mean of 2.1 on ERI, and those with the highest MWs scored a mean of 2.7 on ERI. In sum, a higher MW was associated with a generally higher level of state regulation of labor and employment relations.

Thus, a state’s MW tends to proxy a realm of labor law and law enforcement larger than itself. In effect, the MW provides a Gestalt image of the labor environment in any state. We consider this fuzzy image an advantage at this stage. That is, as a variable, a state’s MW contains tacit information about a state's labor code and labor code enforcement such that a high MW generally implies a higher standard of labor law and labor law enforcement. Our real interest is in identifying states with lax and strong labor standards and regulation of labor relations. To identify these regulatory environments, it is not ideally utilize measures of state MW levels as well as the strength or laxity of a state’s labor code and labor code enforcement, but the two latter are difficult to model because the information is difficult to assemble.

The cyclical character of state MW policies requires discussion. When the federal MW has not been raised for many years, many states will have raised their MW above the federal level. At that point, many states will have a MW above the federal level; few will retain the federal level. When at last Congress raises the federal MW, then few states will be above the federal MW level. The prevalence of an above-federal MW among the states also depends on the cycle in which the results are tallied.

Because the federal MW did not increase between 1981 and 1990, many state legislatures began to raise their state’s MWs above the federal level in the 1990s (Neumark and Wascher 2006:2–3). This wave of increases created an opportunity in which to examine the effects of state’s MW policies on a very large migratory influx of MEXCA immigrants during the decade. We have taken advantage of this propitious decade to evaluate the immigration effects of the state’s MWs on MEXCA influx. Table 1 lists states that had a federal-level MW versus an above-federal MW for at least 1 year during the 1990s (U.S. Department of Labor, Wages and Hours Division 2011). Also shown in Table 1 is the percentage share of MEXCA and non-MEXCA immigrants who settled in each of the forty-eight contiguous U.S. states between 1993 and 1999. We excluded from the analysis Alaska and Hawaii because they are noncontiguous with the other forty-eight states.
Theory and Hypothesis

We theorize that when states raised their MW above the federal level in the 1990s, the growth of low-wage employment slackened or was even negative in those states relative to states that retained the federal MW. Conversely, the growth of low-wage jobs accelerated in states that retained the federal MW. Some low-wage jobs relocated to states that retained the lower federal MW; more broadly, the growth of low-wage employment expanded faster in states that retained a federal MW. The geographical realignment of low-wage jobs following increases in some state’s MWs, we believe, created an immigration pull that attracted MEXCA immigrants to states that retained the federal-level MW. We, furthermore, theorize that, as an overall result, influx of recent MEXCA immigrants slowed to states with above-federal MWs, and some already resident recent immigrants moved from those states to states with the lower federal MW.

Our hypothesis is more modest than our theory. We hypothesize only that U.S. states that implemented higher-than-federal MWs for at least 1 year between 1990 and 1999 reduced the influx of recently arrived Mexicans and Central Americans relative to their inflow into other states, and we also hypothesize that no such reduction of inflow occurred among other immigrants who arrived at the same time. This formulation compares recently arrived MEXCAs with other recent immigrants rather than with the native-born. However, for the record, we would also suppose that if recently arrived MEXCA immigrants were compared with native workers, the results would be similar. If supported by evidence, our hypothesis suggests that by retaining the low, federal MW, some states created a more favorable environment for the growth of the low-wage jobs that subsequently attracted MEXCA immigrants. However, we track immigrants, not the jobs that presumably attracted them. A study of jobs would make a logical follow-up to this study of migrating people. Our effort here is only to ascertain whether, net of controls, states’ implementation of low federal-level MWs during the 1990s attracted more recently arrived MEXCA immigrants to those low-MW states than were attracted to the states that implemented higher-than-federal MWs during that decade, as well as whether MEXCAs were more attracted to federal MW states than were non-MEXCAs.

Study Design

Studies that have focused on new immigrants generally have relied either on Immigration and Naturalization Service (INS) data or on decennial census data. The INS datasets contain individual information on each foreigner legally admitted for permanent residence. Census data contain more attributes and have the advantage that they include illegal immigrants, who are about half of MEXCA recently arrived immigrants, but they become available in full only once every ten years (Newbold 1999). We opted to utilize data from the 5% Public Use Sample (PUMS) of the 2000 U.S. Census of Population rather than the INS data because we wish to analyze the settlement choices of the illegal as well as the legal migrants; indeed, given that we focus on the most vulnerable immigrants, illegal immigrants are those we most want to study.

Minimum Wage and Mexican and Central American Influx

Within the voluminous and interdisciplinarily location-choice literature, most studies use a multinomial logit model to assess the determinants of settlement choice for international immigrants or for internal migrants (Bartel 1989; Dunlevy 1991; Jaeger 2000; Kanaorgou and Ferguson 1998; Kritz and Noggle 1994; Newbold 1996; 1999; Scott, Coomes, and Izumov 2005). We follow this multinomial logit modeling convention. For immigrants who were either already living in the United States and relocating or who were accepted for arrival or who had just crossed the border illegally, location choice inside the United States is normally modeled as a joint function of the immigrants’ personal characteristics, the characteristics of places in the United States, and an interaction of personal and place characteristics (Bloomquist, Berger, and Hoehn 1988; Greenwood 1985; Scott et al. 2005). The locational choice literature thus quantifies the importance of personal characteristics, state characteristics, and person/region interactions in immigrants’ locational choices (Bartel 1989; Davles, Greenwood, and Li 2001; Dunlevy 1991; Jaeger 2000; Kanaorgou and Ferguson 1998; Kritz and Noggle 1994; Newbold 1996; 1999; Scott et al. 2005). These studies all confirm a high sensitivity of immigrants’ location choices to prior co-ethnic concentrations and to economic opportunities. In terms of the geographical level of analysis, most existing studies of the location choices of immigrants have been done at the state level (Buckley 1996; Dodson 2001; Zavodny 1999), while only a few studies have selected the metropolitan level (see Light and Johnston 2009; Scott et al. 2005).

Our study made these design choices: (1) We analyze Census data at the state-level because: (a) many recently arrived immigrants work in agriculture, which is located outside metropolitan areas; (b) MW policies are implemented at the state-level, not the metropolitan level; and (c) overburdening our model with too many settlement choice options would cloud our results.

(2) As is commonly done in similar studies, we include interaction terms between the settlement choice level of each immigrant and every regional characteristic. However, we do not include female gender as a control variable because, like comparable studies, we only selected and analyzed the settlement choices of male immigrants aged 18–65 (cf., Bartel 1989; Peña 2009; Scott et al. 2005).

(3) We use a cross-sectional approach, selecting only recently arrived immigrants. Therefore, using information from the 5% Public Use Sample of the 2000 U.S. Census of Population, we only select male immigrants aged 18 to 65 who arrived between 1995 and 1999. This procedure guarantees that we are studying the effect of the migration determinants that were present at the time the migrants arrived.

(4) We ran the analysis separately for the two immigrant groups under comparison: recently arrived MEXCAs and recently arrived immigrants from all other countries (non-MEXCAs). We compare male, working-age MEXCAs to male, working-age non-MEXCAs because all recently arrived immigrants make their location settlement choices under the exact same state’s social and economic conditions, and yet, as a group, recently arrived MEXCAs earned less than recently arrived non-MEXCAs (Rosenbluh et al. 2012: Table 4). We predict a difference in responsiveness to state MWs between these two groups precisely because of the MEXCAs’ lower mean wages.
Statistical Method

A statistical model is specified that explores the determinants of the locational choices made by immigrants who arrived between 1995 and 1999. We postulate a recently arrived immigrant, characterized by certain personal traits, who seeks to maximize utility through his choice of an American state for settlement. We use a multinomial logit framework to model a utility maximizing recently arrived immigrant in a discrete choice situation. The multinomial logit model has long been the preferred framework for analyzing location choice (Bartel 1989; Dunlevy 1993; Jaeger 2000; Kannaroglou and Ferguson 1998; Krantz and Noglo 1994; Newbold 1996; 1999; Scott et al. 2005). Following most closely Bartel (1989), our model assumes that a recently arrived immigrant has a set of N possible location choices (fifty-eight contiguous U.S. states) and that there is a level of utility, U_{ij}, for an individual recently arrived immigrant i at state j. Each recently arrived immigrant implicitly compares the perceived utilities obtainable in each of the N states in which he might settle, and he will select the state that offers the largest perceived utility. Therefore, the probability that a recently arrived immigrant i chooses to settle in state j is given by:

$$P_{ij} = P(U_{ij} = \text{MAX} \{U_{i1}, U_{i2}, ..., U_{iN}\})$$

(1)

To estimate equation (1), it is necessary to have information about the utility levels that are present in each of the N states. Since it is impossible to observe utility levels, an alternative is to specify the variables that in each state presumably affect that utility level. Thus, in each state, a recently arrived immigrant's utility level is a function of the state characteristics, X_{ij}, as well as certain personal attributes, X_{i}. Then, if we assume a linear relationship, the equation results in:

$$U_{ij} = \alpha + \beta X_{ij} + \epsilon_{ij}$$

(2)

where α and β are the parameters that will be estimated and ϵ_{ij} is the error term. To simplify, we rewrite equation (2) as:

$$U_{ij} = \gamma Z_{ij} + \epsilon_{ij}$$

(3)

where $Z_{ij} = [X_{ij}, X_{i}]$ and $\gamma = [\alpha, \beta]$.

Using equation (3), we can write the probability of selecting state j as:

$$P_{ij} = P(Z_{ij} + \epsilon_{ij} > Z_{i1} + \epsilon_{i1}, Z_{ij} + \epsilon_{ij} > Z_{i2} + \epsilon_{i2}, ..., Z_{ij} + \epsilon_{ij} > Z_{iN} + \epsilon_{iN})$$

(4)

McFadden (1973) has shown that if the ϵ's are expected to be independently and identically distributed, then equation (4) can be rewritten as:

$$P_{ij} = \exp(Z_{ij}) / \sum_{s=1}^{N} \exp(Z_{is})$$

(5)

Equation (5) is the familiar multinomial logit model (or likelihood function) for any recently arrived immigrant i who has chosen to settle in state j. When the log of this likelihood function is summed across all recently arrived immigrants and maximized relative to the γ's, the estimates of γ show information on the effect of the vector of Z variables in a certain state on the utility level that the recently arrived immigrant associates with that particular state. If a variable in Z_{ij}, increases utility, it will have a positive effect on the probability that a certain state is chosen over all the alternative states.

Data and Variables

We use data from the 5% Public Use Sample of the 2000 U.S. Census of Population, selecting only foreign-born male immigrants between eighteen and sixty-five years of age who arrived between 1995 and 1999. The dependent variable is the probability P_{ij} that the recently arrived immigrant i chooses to settle in state j, with the probability assumed to be a function of the utilities associated with the forty-eight states in the choice set. Thus, the dependent variable that we call Destination-Choice has a value of 1 for the state in which the recently arrived immigrant respondent chose to settle; and it has a value of 0 for all forty-seven other states.

We represent the utilities associated with the states in the choice set through control variables that we selected based on previous studies as well as on theoretical grounds. Separate but identical models are estimated for recently arrived MEXCA and non-MEXCA immigrants, with utilities represented by the following observed explanatory variables that control for the sociodemographic and economic state-level characteristics of each of the forty-eight contiguous U.S. states between 1995 and 2000 as well as their interactions with the personal characteristics of the recently arrived immigrants that are known to influence the settlement choices of immigrants (cf., Bartel 1989; Newbold 1999).

MW

We include one binary (dummy) variable that measures the state's MWs implemented between 1990 and 1999. MW is the main independent variable whose effects we examine. This binary MW variable, which we labeled High_MW_95-99, identifies whether or not the state in question implemented an above-federal MW for at least 1 year during the 1990s (which we coded 1) or whether the state never implemented an above-federal MW during that decade (which we coded 0). Our source was the U.S. Bureau of Labor, Department of Wages and Hours (2011).

Number of Immigrants' Co-Nationals

For each recently arrived immigrant, as a control for the co-national network, we include the number of foreign-born persons of the same nationality living in each state in 1990. This control is essential since prior studies have repeatedly found that this measure captures the all-important network effect (Bartel 1989; Peña 2009; Scott et al. 2005; Zelinsky and Lee 1998). According to the literature, co-national networks should be a key determinant of location choice, ahead of MW levels, and should have a positive value. We calculated this co-national-network proxy, labeled Ln_CoNationals, as the natural logarithm of the number of immigrants from each nationality who resided in each state in 1990 (using the 5% Public Use Sample of the 1990 U.S. Census of Population).
We also attempted to include in our model specification each state’s total number of foreigners (Ln_Foreigners), another common control variable. Nevertheless, we decided not to include Ln_Foreigners in our model specification because it did not contribute substantially to the model goodness of fit, and it created multicollinearity problems, but including Ln_Foreigners did not significantly change the effect of the MW variable or the other variables.

Total Population

Studies have found that a state’s total population influences settlement choice because total population is correlated with job opportunities as well as with the scope and scale of local services. We obtained a measure of states’ total population from the 2000 U.S. Census. This measure we log transformed and named Ln_Pop. Following Bartel (1989), Newbold (1999), and Scott et al. (2005), we expect the coefficient of Ln_Pop to exhibit a positive sign.

Job Growth

Similarly, as a conventional indicator of the vibrancy of each state economy (Newbold 1999, Scott et al. 2005), we include the state’s percentage job growth between 1995 and 1999, and we expect this variable to have a positive sign. This variable was labeled Job_Growth_9599 (U.S. Department of Commerce, Bureau of Economic Analysis, 2012a; 2012b; 2012c).

Distance from Country of Origin

Greater distance from the country of origin to each of the different U.S. states reduces the expected settlement probability of immigrants. This distance has, moreover, been found particularly relevant for recently arrived immigrants (Bartel 1989; Newbold 1999). Since MEXCA and non-MEXCA immigrants enter the United States from different directions, a statistical control for this difference may be essential. Following the convention, we calculated this measure of geographical proximity, called Ln_Distance, by log transforming the data on air distances in miles between the capital city of each migrant’s homeland and each of the U.S. state capitals, which we obtained from the City Distance Tool (http://www.geobytes.com/CityDistanceTool.htm?loadpage).

State’s Mean Earnings per Job

To represent general economic opportunities, we include each state’s average annual earnings per job between 1995 and 1999 (Newbold 1999; Scott et al. 2005). We used earnings per job information from the U.S. Bureau of Economic Analysis (2002) historical dataset that we log transformed, calling it Ln_St_Earnings. When mean earnings or mean wages and unemployment have been studied in previous research, it has been reported that their signs can often not be predicted. According to the migration literature, state unemployment and mean earnings (or mean wages) might not have consistent effects on location choice because they are known to often persist in equilibrium (Bartel 1989).

Unemployment Rate

To represent economic opportunity in the forty-eight states, we used the average over-the-year change in unemployment rates for states between 1995 and 1999 for the civilian noninstitutional population sixteen years of age and over. This unemployment information was taken from the U.S. Department of Commerce, U.S. Bureau of Labor (2006). We labeled this rate Unemp_9599.

Job Growth in Agriculture and Construction

It is also conventional to measure job growth within sectors of the economy that are most likely to attract the immigrants one studies (cf., Peña 2009; Scott et al. 2005). MEXCA often find work in construction and agriculture. The model we run for recently arrived MEXCA immigrants, therefore, controls for each state’s percent job growth in agriculture and construction between 1995 and 1999. This information was obtained from the U.S. Department of Commerce, Bureau of Economic Analysis (2012).

We dubbed the variables Agri_Growth_9599 and Construc_Growth_9599. These variables measure growth in the low-wage jobs that are of particular importance to MEXCA but of lesser importance to non-MEXCA. We do not include the job growth of the agricultural and construction sectors in the model for non-MEXCA immigrants because the results are similar when included, but we obtain better fit-statistics when excluded.

Mean Housing Cost

Proxying housing affordability in each state, known to affect settlement choices, we also include in our model specification the mean house values for each state between 1995 and 1999 (cf., Ashlund 2005; Damm and Rosholm 2010). In our model specifications, we use a measure of housing costs, which we obtained from the Census of Housing of the U.S. Census Bureau and that we log transformed, calling it Ln_St_Housing. This information was obtained from the historic values of the U.S. Census Bureau’s Census of Housing. The sign of Ln_St_Housing can often not be predicted, since it is also likely to persist in equilibrium.

Bush’s Presidential Vote, 2000

The MW is politically controversial: Republican states are much less likely to introduce an above-federal MW than are Democratic states. As a timely measure of state’s Republican or Democratic voting tendencies, we use the percent vote for President Bush in the 2000 Presidential election. This information was obtained from the “2000 Official Presidential Election Results” published by the Public Disclosure Division of the Federal Elections Commission (http://www.fec.gov/pubrec/2000presgeresults.htm).

We labeled it Like_Bush. We used this voting measure because it tends to be correlated with various regional differences in anti-immigrant attitudes, pro-business attitudes, and sometimes also with regional differences in welfare benefits (Damm and Rosholm 2010; Fougere and Serandon 1997).
To control for pro/anti-business attitudes as a robustness check we also replaced the variable Like_Bush with the states’ unionization rate in 2000. The information to build this variable was obtained from Table 5 of “Union Affiliation of Employed Wage and Salary Workers by State,” from the Bureau of Labor Statistics, U.S. Department of Commerce (http://www.bls.gov/news.release/pdf/unions2.pdf). However, we decided to use Like_Bush because we obtained similar results with either variable, but had better model-fit statistics from Like_Bush.

Education

Finally, we created an interaction term between a respondent’s years of schooling (SclH) and each of the state-level variables. Previous studies have shown that personal attributes and particularly the immigrant’s schooling levels influence settlement choice. Although we tested all the interaction terms between immigrant’s schooling level and all the state-level variables, our tables only present the only interaction term that was statistically significant, namely an immigrant’s years of schooling times the natural logarithm of the immigrant’s number of co-nationals in each state, that we call SclH_X_CoNationals. We expect SclH_X_CoNationals to have a negative sign, because previous studies have found that the presence of co-nationals is more important for people in the lower education categories and that people with higher education are more geographically dispersed (Bartel 1989; Camarota and McArandle 2003).

Scaling

All variables are scaled to comparable size, as required for the multinomial logit procedure. This is why many of the continuous regional variables were log-transformed; that is, the natural logarithm of their value is used. Table 2 presents the mean values and the linearized standard error of each variable.

Estimation Results

Using the multinomial logit model described above, we assess the effect that high and low state MWs had on the settlement choices of MEXCA and non-MEXCA male immigrants aged 18–65 who arrived between 1995 and 1999. In column 1 of Table 3, we present the results of a model specification with all state-level control variables for MEXCA immigrants, who arrived between 1995 and 1999; column 2 introduces, also for MEXCA, our extended model specification. In this model, in addition to all regional variables, we include the only interaction term between personal and regional characteristics that had a significant effect on immigrants’ settlement choice. This interaction was each immigrant’s schooling level times the natural logarithm of the number of co-nationals that the immigrant had in each state. For non-MEXCAs, in column 3 of Table 3 (identical to column 1 for MEXCAs), we present a model specification with all regional variables, and in column 4 (identical to column 2 for MEXCAs), we present the results of our extended model with all regional variables and the interaction term between immigrant’s schooling level and the number of co-nationals. The estimation results are reported in Table 3.

When we compare column 1 and column 2 (Table 3) and when we compare column 3 and column 4, we find that the effects of all state characteristics are in both cases very similar. Hence, although the interaction term (SclH_X_CoNationals) is significant and negative for both immigrant groups, including this interaction term or omitting it hardly changes the results of the other migration determinants. Except for the effect of SclH_X_CoNationals among MEXCA immigrants (significant at the 5 percent level), all other control variables in each of the 4 columns of Table 3 are significant at the 1 percent level, and when predictable at all, most have the expected sign.

Our results show that MEXCA and non-MEXCA immigrants were attracted to states with large populations, to states where the immigrant has a large number of co-nationals, as well as to states that are experiencing a relatively large employment growth. MEXCA immigrants were more attracted to states that experienced a relatively large employment growth of their agricultural sector, but they were not more attracted to states whose construction sector experienced high employment growth. Conversely, a state’s higher unemployment rate and a larger distance between an immigrant’s homeland and a U.S. state depressed the immigrant’s likelihood of choosing a state for settlement, thereby decreasing the odds that immigrants of both groups would settle there. Moreover, non-MEXCAs were attracted to states with lower housing costs and with higher mean earnings per job, whereas the opposite was true of MEXCAs. However, as we mentioned before, we cannot really interpret these different effects of states’ mean earnings and housing costs for both immigrant groups.

With Like_Bush, whose higher value reflects a more Republican environment, we anticipated a positive effect on the settlement choice of MEXCAs, and results confirmed our expectation; since in the 1990s, MEXCA immigrants tended to locate in more traditional, Republican-leaning states. As a robustness exercise we also ran again our extended model specification (columns 2 and 4 of Table 3 for MEXCAs

<table>
<thead>
<tr>
<th>Variables</th>
<th>M</th>
<th>Linearized SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>High_St_MWs_1990s</td>
<td>2.37</td>
<td>0.00004</td>
</tr>
<tr>
<td>Ln_CoNationals</td>
<td>8.79</td>
<td>0.005</td>
</tr>
<tr>
<td>Ln_Pop</td>
<td>15.1</td>
<td>0.00054</td>
</tr>
<tr>
<td>Unemp_9599</td>
<td>4.77</td>
<td>0.00001</td>
</tr>
<tr>
<td>Ln_Distance</td>
<td>7.39</td>
<td>0.0035</td>
</tr>
<tr>
<td>Ln_St_Earnings</td>
<td>10.04</td>
<td>0.0038</td>
</tr>
<tr>
<td>Job_Growth_9599</td>
<td>2.21</td>
<td>0.00002</td>
</tr>
<tr>
<td>Agrn_Growth_9599</td>
<td>0.67</td>
<td>0.00002</td>
</tr>
<tr>
<td>Constr_Growth_9599</td>
<td>3.80</td>
<td>0.00001</td>
</tr>
<tr>
<td>Ln_St_Housing</td>
<td>11.57</td>
<td>0.0036</td>
</tr>
<tr>
<td>Like_Bush</td>
<td>50.2</td>
<td>0.002</td>
</tr>
</tbody>
</table>

a. We present survey estimation results as the mean values are weighted; the variables are described in the text.
and for non-MEXCAS, respectively) except that we excluded Like Bush. Exclusion did not appreciably change the results.

In terms of our main independent variable, each state’s MW policies during the 1990s, results support our hypothesis. For MEXCAS who arrived between 1995 and 1999, our results show that being a state that implemented higher-than-federal MWs during the 1990s decreased the odds that MEXCAS would settle there as opposed to settling in states that retained the low federal-level MW throughout the decade. Thus, high MW states partially deflected MEXCA immigrants to low MW states. Conversely for non-MEXCAS and also as hypothesized, being a high MW state during the 1990s did not affect the odds that a non-MEXCA immigrant would settle there. Therefore, in our extended model, net of all controls, states that implemented above-federal MWs for at least 1 year during the 1990s lowered the likelihood that recently arrived MEXCAS would choose to settle there by 23 percent as opposed to states that retained the lower federal MW for the entire decade. We read the odds ratio of 0.77 as a probability of −23 percent (1−0.77). In contrast, as column 4 of Table 3 shows, net of all control variables, being a high MW state during the 1990s had no effect on the non-MEXCAS’ likelihood of choosing that state as opposed to choosing a low MW state. The key point is that high state MWs deflected MEXCA immigrants, whereas they did not deflect non-MEXCA immigrants.

Sensitivity Analysis

To check the robustness of our results, we performed several sensitivity tests, inquiring whether changes in the definition and/or time period of our main independent variable or omission from the analysis of a few high-profile states might importantly affect our results.

Possibly, a few traditional settlement states which had a much higher likelihood of being chosen by MEXCAS, overwhelmed our results. To test that issue, we estimated our original extended model (columns 2 and 4 of Table 3) while excluding the choice of settling in the big-three traditional settlement states (California, Texas, and Illinois) that Mexican immigrants continue to oversolicit. After omitting these three states, we obtained basically the same results as those of our original extended model specification, so we conclude that these three states did not overly influence our results.

Likewise, it is conceivable that a decade’s lag is too long and that testing the effect of the states’ MWs during a shorter time frame might obtain different effects on the settlement choice of immigrants. Therefore, we tested two alternative specifications that measure the effects on settlement of shorter time lags. We examined whether the states that implemented an above-federal MW between 1992 and 1999 and between 1993 and 1999 showed any differences from those that implemented it during the entire decade of the 1990s. Running these alternative specifications (with the MW variables measuring their state-wide implementation during the periods 1992–1999 and for 1993–1999), we obtained results that are quite similar to the ones we presented in Table 3. We conclude that the definition of our main independent variable does not represent a problem in terms of the length or lag-period of the MW variable.
We used a dummy variable for our key independent variable, state’s MW policy. Possibly we would obtain different results had we used instead a continuous variable that reflects for how many years an above-federal MW was implemented during the 1990s as well as by how much it was above the federal level. To evaluate that possibility, we estimated an alternative model specification identical to our original except that it assesses the effect of the different levels of MWs that were implemented by states during the 1990s on the settlement choice of both groups of immigrants. We found a reduced but, as expected, still negative and statistically significant effect of these different dollar levels of federal MWs of the 1990s on the MEXCA immigrants’ settlement choices between 1995 and 1999. Results are not significant for non-MEXCA. These results mean that it was more important if states implemented above-federal MWs at all rather than by how much they did so. There could be many reasons for this result, which would merit further study, but are beyond the scope of our current analysis.

Moreover, some immigrants who arrived during the five-year period (1995–1999) might have resettled from one state to another during the five-year period. Undetected movements might influence the results of our original extended model specification. To test the robustness of these results, we ran a variation on our original model specification, running the same analysis for just the MEXCA and non-MEXCA immigrants who arrived during each of those years (1995, 1996, 1997, 1998, and 1999). Our results closely resemble those of our original, extended specification (Table 3). It does not appear that relocation of immigrants from one state to another distorted our original results.

Finally, as a last robustness check, we also ran a rare-events regression (King and Zeng 2001), which corrects for biases that may occur in different types of logit and logistic regressions that predict rare outcomes, where the datasets have many more 0s than 1s. According to King and Zeng (2001), multinomial logit and logistic regressions that have a binary outcome may underestimate the probability of rare events. This contingency might affect our analysis because, in our dataset, only 2 percent of the outcomes are 1s rather 0s (since every immigrant has a choice of setting in one of forty-eight states). However, running the rare-events regression with our original extended model specification, we obtained basically the same results as with the regular multinomial logit regression, suggesting that our results do not underestimate the probability of rare events.

In all these robustness checks, MEXCA immigrants invariably displayed a higher likelihood to choose states with low rather than high MWs; non-MEXCA immigrants showed no comparable tendency or slightly preferred high MW states. As predicted, high MWs deflected MEXCA, but not non-MEXCA.

DISCUSSION

States that implemented higher-than-federal MWs for at least one year during the 1990s reduced the likelihood that MEXCA immigrants would select them for settlement between 1998 and 1999 rather than states that only implemented the lower, federal-level MWs during that decade. The states’ implementation of above-federal MWs during the 1990s did not affect non-MEXCA’s settlement choices during that same time period. These results we obtained net of standard control variables. Several robustness tests did not dislodge our basic results. These results are consistent with our hypothesis.

CONCLUSION

The question we address is not whether growth of low-wage jobs in non-traditional states pulled MEXCA toward those states, but how it did so. We agree that low-wage jobs attracted MEXCA immigrants, but we propose that political influences at the state level also influenced the production and retention of low-wage jobs. We hypothesized and found that, net of controls, MEXCA immigrants who arrived between 1995 and 1999 oversampled for settlement states that implemented lower MWs during the 1990s, rather than states that implemented above-federal MWs. This hypothesis reflected our theory according to which low-wage job growth and job retention should have proceeded most abundantly in states that only implemented the federal MW. A federal MW directly represents the ability lawfully to offer lower wages than would be legal in higher-than-federal MW states. But the state MWs also proxy a wider range of employment and labor law issues that additional research should address. However, at this stage, federal MW policies may signal that these states were more likely to tolerate low-wage labor and inferior working conditions than were high-MW states and that this political choice had economic consequences. To say that an economy is embedded in a society is to acknowledge that, in a federal political system, a state’s political choices will influence the kinds of industries and hence the kinds of immigrant labor it attracts. Markets will select such places, but cannot by themselves create them.

Acknowledgments: This research was supported by grants from the UCLA Center for Politics & Public Policy (CAPPP) and from the UCLA Institute for Research on Labor and Employment (IRLE). We are grateful for this support; however, the authors alone are responsible for errors of fact, method, or interpretation.

NOTES

1. The three traditional states for Mexican settlement contained 83 percent of the total foreign-born Mexican population in 1980, but only 63 percent in 2000. Deflection means the redirection of immigrant population from traditional to new localities in response to changing incentives, such as saturation, and state labor policies, and despite the conservative influence of migration networks. Deflection is measured by the reduction in the states’ retained share of a sending country’s total immigration over time. The deflection of Mexicans is thus obtained by multiplying the total population of foreign-born Mexicans in the United States by .83 and then by .63. The difference between these two is the number of foreign-born Mexicans deflected from the three traditional states between 1980 and 2009.

2. True, informal economies exist in every state. In informal economies, firms flout labor laws. Nonetheless, if law has any effect upon the location of low-wage work, that effect should, nevertheless, be statistically visible.
3. In 2002, the U.S. Supreme Court in a 5-4 decision (Hoffman Plastic Compounds vs. NLRB) stripped undocumented workers of the right to unionize. Subsequently, employers have sought to expand Hoffman, threatening workers with dismissal “if they complain about minimum wage violations” (Compa 2004:139).

4. Following the multinomial logit approach, we expanded each dataset longitudinally so that, for each respondent, instead of just one line with information, we create one line for each of the forty-eight contiguous U.S. states. We then, merged the longitudinally expanded dataset with a dataset containing aggregate state-level information about each of the forty-eight contiguous U.S. states. Thus, each of the forty-eight lines prepared for any respondent is accompanied by the complete aggregate information that corresponds to each state. This structure permits a comparison of respondents’ settlement choices that takes into account aggregate state information.

5. According to McFadden (1974) and Newbold (1996:1999), a rho-squared of around 0.2 generally indicates a good model fit.

6. Tables with the results of our robustness checks are available upon request.

REFERENCES

THE ENDURING IMPACT OF RACE: UNDERSTANDING DISPARITIES IN STUDENT DISCIPLINARY INFRACTIONS AND ACHIEVEMENT

AUDREY N. BECK
San Diego State University

CLARA G. MUSCHKIN
Duke University

ABSTRACT: To what extent do persistent race gaps in educational outcomes stem from differences in the level of advantage that students bring to school or from differences in opportunities to succeed? In order to disentangle the component elements of race gaps in middle school achievement and disciplinary infractions, the authors use demographic methods that quantify the proportion of the race gap that is linked to the student, peer, and school composition of race groups. Using administrative school records from North Carolina, the authors find that: (1) students' family and demographic characteristics are the most important explanatory factors; (2) the distribution of students across schools with differing racial composition, school size, teacher qualifications, and poverty levels also contribute to explaining the gaps; and (3) a substantial portion of each race gap remains unexplained by these compositional differences.

Keywords: racial inequality, education, adolescents

Persistent inequalities in the educational achievement of public school students are a driving force behind school reform policies. The No Child Left Behind Act of 2001 at its inception acknowledged “a growing ‘achievement gap’ between white and African American students ... left unaddressed for far too long” (U.S. Department of Education 2006). Evidence from school accountability systems, as well as from national surveys, indicates that racial disparities are still sizeable; researchers have estimated that it may take between 30 and 50 years to close the gap in reading achievement and between 75 and 100 years to close the gap in math and science achievement (Hedges and Nowell 1999). The achievement gap in North Carolina has followed national trends; analyses using average test scores confirm the persistence of black-white differences.