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ECOLOGICAL INFERENCE

he problem of inferring individual behavior from
aggregate data is among the oldest problems in polit-
ical methodology. Simplest among these problems is
the attempt to reconstruct the interior cells of a set of 2 X 2
tables from their marginal totals. An archetypal problem of
this sort is the estimation of election turnout by race. In
most cases, the number of whites and nonwhites who vote
in an election is not tabulated. However, the white and non-
white population and total turnout in a number of election
reporting units (e.g., counties or precincts), is generally
known. The problem of ecological inference, in this case
(and in all cases considered in this article), is to use partial-
ly aggregated information on the marginal distributions of
the variables of interest (e.g., percentage white and percent-
age turnout in each precinct) to infer the joint or condition-
al distribution of these variables across all reporting units
(precincts).
Ecological inference is generally considered to be at best
a necessary evil. The glib solution often suggested is “Go
collect individual-level data.” However, if anything, the
need for reliable methods of ecological inference is perhaps
greater than it has been at any time since the explosion of
survey research in the early 1960s. First, as the tabulation of
electoral returns becomes increasingly automated, very
large sets of precinct-level election returns are becoming
available (e.g., Lewis 1998 and King et al. 1997). A second
source of demand is democratization in Eastern Europe and
Latin America. Electoral competition in newly formed
democracies is an active area of research. However, survey
data are limited. Scholars in this field must rely on aggre-
gate election returns to understand these elections (see
Ames 1994). Finally, there is demund from an increasing
number of scholars interested in quantitative approaches to
historical questions. Unfortunately, most existing methods
of ecological inference are perhaps most famous for their
failures. The lack of robustness of the ecological regression
model to violations of its assumptions, for example, repre-
sents a real impediment to its application and thus to the use
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of ecological data in the study of these important substan-
tive problems.

Against this background, Gary King offered A Solution
to the Problem of Ecological Inference (1997). This new
method has received considerable interest and attention.
However, its workings and relation to existing methods are
largely unexplored. In this article, I attempt to address these
questions, and I develop King’s model (hereinafter EI) by
extending Leo Goodman’s (1959) familiar ecological
regression (ER) model. I consider analytically a good deal
of the distance between what is generally referred to as
Goodman’s ecological regression and King’s estimator.

The empirical application that I use to exemplify the sta-
tistical issues inherent in King’s method (and ecological
inference) is support for ballot propositions. The question
considered is how to calculate the percentage support for
propositions among those voting for each of two state
assembly candidates. I have argued elsewhere that estimates
of the support for propositions among those voting for win-
ning assembly candidates can be used as a measure of the
policy preferences of asseinbly members’ electoral coali-
tions (Lewis 1998).

In particular, I consider the problem of using precinct-
level voting returns to estimate the support for Proposition
156 among those voting for the Democratic and Republi-
can candidates for California’s 60th State Assembly Dis-
trict in 1992. Labeled the Rail Bond Act of 1992, Proposi-
tion 156 was the second in a planned series of three rail
bonds that were part of a major transportation initiative
taken by the state legislature in 1990. The proposition was
narrowly defeated statewide by a margin of 49 to 51 per-
cent. The 6Cth State Assembly District is carved out of
Los Angeles County. The district has 301 precincts.
Proposition 156 was supported by 40 percent of the
134,000 voters districtwide. The incumbent Republican
assembly candidate, Paul Horcher, rather easily defeated
his Democratic challenger, Stan Caress, taking 67 percent
of the two-party vote.
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It should be noted that this proposition-district pairing
was not chosen for its substantive interest. Rather, I chose it
for two methodological reasons. First, it is one of 306
proposition-district pairs from Los Angeles County for
which individual-level voting data are available. Thus, the
validity of ecological inferences can be checked against the
actual individual-level behavior. Second, of these 306 pairs
for which I'have individual-level data, this pair is among the
most consistent with the assumptions of King’s (1997)
model. The reader should not therefore infer that the suc-
cess of King’s model in this example is typical of what
might be achieved in general. However, an example in
which the data are “nice” is preferable for describing how
the method works. I go on to test King’s method on all 306
data sets for which I can validate its success. From that
analysis, one can obtain a good sense of how well King’s
method works on these sorts of data in general.

The article develops as follows. In the second section, I
lay out the notation I used throughout and describe the basic
problem of ecological inference. In the next three sections,
[ provide a method-of-moments logic for understanding
King’s (1997) model. In the third section, I describe the key
assumptions of King’s model. In the fourth section, T begin
to develop King’s estimator from the starting point of the
standard ecological regression model. In the fifth section, I
complete the development of both King’s estimator and my
method-of-moments alternat’ve. In the sixth section, I con-
sider King’s claim that his method is more robust to viola-
tions of its assumptions than the conventional ecological
inference model. I conclude with the seventh section.

The Basic Problem and Some Notation

As I mentioned earlier, the problem considered here is
that of inferring the distribution of the support for Proposi-
tion 156 among voters who supported the Democratic

assembly candidate and among voters who supported the
Republican assembly candidate. The data used to make
these estimates are the marginal distributions of support for
the proposition and for the Democratic assembly candidate
across precincts. To simplify the problem, I discarded the
votes of those who supported third-party assembly candi-
dates or who abstained either in the assembly election or on
the proposition. That is, the data fit exactly into the 2 x 2
table shown in table 1.!
I begin with the following definitions:?

D; = vote share for the Democratic assembly candidate
(in precinct ),

P; = vote share for the proposition,
B® = proposition support among Democrats, and

f® = proposition support among Republicans.

D; and P; are observed quantities for each precinct i=1, .. .,
L. The object of ecological inference is to make statemenis
about the distribution of AP and ® across precincts on the
basis of observations on D and P.

One of the contributions of King’s book is that it
focuses attention on the value of estimating more than
just the average or weighted average of the fs across
precincts. Indeed, it has often been said that the couven-
tional ecological regression model assumes “constancy”
(Freedman et al. 1991, Cho 1998). Constancy is the
assumption that fP = P and SR = f® for all precincts i =
1, ..., L in other words, that the rate of support for the
proposition is constant for Democrats and Republicans
across precincts. This assumption is obviously rejected
in every case and is not an assumption of the regression
model proposed by Goodman (1959) (see King [1997,
58-60}). Nevertheless, it is true that ecological regres-
sion focuses on the mean to the exclusion of any other
feature of the distribution of the fs.

TABLE 1
Inferring Interior Cells of a 2 x 2 Table from Repeated Observations of Marginals

Percentage voting
Democrat
for assembly

Percentage not voting
Democrat
for assembly

Percentage voting 4P I P
yes on proposition ? ?
Percentage not voting (L~ (1= (1-r)
yEs Ol proposition ? ?

D (1 =D)

A

Moo Question marks dadicate quantiiics aot observed in data, Quantinies w inferior cells are conditional nrobabitities.




The Toens on the mean or weighted mean of the fs fol-

fows from the fact that most ofien the ultimete quantities of
interest are the districtwide values 2 and g In our case,
this would be the districtwide percentage of all Democratic
~1d Republican voters who suppoiied Prorosition 156. Le
these quantities be BY and BX, respeciively. They are
defined as follows:

P = _z'éfﬂl_li
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whete n; is the number of voters in the ith precinct. In this
case, the true BP = 49 and the true B = 35, Thet is, the
individual-ballot data reveal that 49 percent of Democrals
and 35 pereent of Republicans supported Proposition 156
districtwide. As King points out, this is not the only guanti-
ty that might interest us. In particular, we may want to be
able to estimate all of the fPs and fRs. Or, at the very leas!,
we may be interested in the variance of the fs across dis-

! (1) tricts or the percentage of precincts in which Democrats
2. D cast a majority of votes in favor of the proposition.

King’s (1997) method seeks t¢ uncover the Joint distrib-

L S AR Pon, ‘ ution of AP and AR In essence, Ki'ng proceeds as follows:

=& (2) assume the Ds and Ps observed in the data are random

N/ 3
L{.\I =Dy

draws from some distribution g(D, P). Then, using these

r
FIGURE 1
Observed Distribution of P and D across Precincts (the Data)
Usually Unebserved Distribution of ° and A% across Precincts (by Attempted Inference)
The data: The observed distribution of P and D across precincts
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observations on D and P, infer the joint distribution of f°
and R, f(f°, fR). In our example data, we can directly cal-
cufate each 2 and ® from the individual-level data. Figure
1 shows both the observed distribution of D and P and the
usually unobserved distribution of 2 and SR that we try to
infer by using ecological inference. Note that there is con-
siderable variation in P and fR in these data. Democrats
gave between 25 and 77 percent support, and Republicans
gave between 19 and 53 percent support across precincts.
Moreover, there is considerable positive correlation
between fP and fR. Given estimates of the distribution of
the fis, King then generates estimates of each P and SR
conditional on P and D. King accomplishes this by using all
of the information that can be gleaned from the data and by
making a number of assumptions. The assumptions are cov-
ered in the next section.

The structure of the problem leads to the following three
observations that have been well understood for some time.
As we will see, King’s (1997) recombination of these obser-
vations 1is central to his method.

1. The support of the distribution of f° and f* is [0,1] X
(0,1].

Because fP and p* arc conditional probabilities, they must
each lie on the unit interval, and therefore each (AP, %) pair
must lie on the unit square. More simply, the percentage of
Democrats and thie percentage of Republicans who support-
ed Proposition 156 must be between 0 and 100. Researchers
often use this fact to discredit the standard ecological
regression model, which is not subjcct to this constraint.
There are several famous examples in which quantities sim-
ilar to BP or B® have been estimated to be greater than 1 or
less than 0.

2. Conditional on P and D, there is a functional relation-
ship between BP and BR.

In particular,
P=fPD+ fR(1 - D). (3)

Equation 3 is often referred to as the “accounting identity”
and is at the heart of both King’s method and the conven-
tional ecological regression model. This expression is quite
straightforward. The overall support for the proposition is
simp!~ the sum of the share of Democrats who supported
the proposition times the percentage who are Democrats
plus the share of Republicans who supported the proposi-
tion times the share who are Republicans. Rearranging this
equation, we find that

P D

o R D
= . 4
/ {-D 1~Dﬂ “)

Thus, once we condition on I and 2, the suppest of 57 and
[R moves from the entire unit square 1o o sinele line through
th square. King's rendeung of these foasible sets on toe

unit square is one of the more elegant contributions of his
book (King 1997, chap. 5). Figure 2 is an example of these
feasible sets for three precincts. As King points out, condi-
tioning estimates of AP and R on P and D greatly reduces
our uncertainty. Before we condition, any point in a square
is admissible. After conditioning, only those points along a
line through the square are admissible.

3. Facts 1 and 2 place strict bounds on the distribution of [i°
and fR.

In particular,

P+D-1

AP e[maX(O, 5 —),min(I—I;,l)} and

P-D P
3R ax(0, ,mi ,1}
Ji elimax( 1_[)) mm(l_D )

These bounds have been known in the ccological inference
literature since O. D. Duncan and B. Davis (1959) and in
statistical theory at least since M. Fréchet (1951). One can
find these minimums and maximums by inspecting the
points at which the feasible sets shown in figure 2 hit the
boundaries of unit square. One of the advantages of King’s
method is that it forces the estimates of each f,° and S} to
fall within these logical bounds. The integration of bound-
ing information into Goodman’s (1959) regression frame-
work is the single most important innovation of Kiiig’s
solution.

FIGURE 2
Feasible Sets for Three Preciucts
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_MISSORICAL ATTHODS

Assumptions

King’s (1997) EI model involves two fundamental
assumptions. The first is the assumption that D is uncorre-
lated with i and fi*. The second is that the (7, SR pairs
are independently and identically drawn from a tr. ncated
bivariate normal distribution. The first assumption has a
long history in the ecological inference literature. The
assumption, its implications, and its history are described in
the next subsection. The assumption of the truncated bivari-
ate normal is an innovation of King’s that has many desir-
able properties and a few drawbacks. These are described in
a subscquent subsection.

The Independence Assumption: No A ggregation Bias

The structure of the problem alone does not allow us to
infer the joint distribution of > and AR from observations
on D and P. More must be kii..wn or, typically, assumed. In
particular, we must know the degree to which AP and R are
a function of D. The centrality of this knowledge is clever-
ly described by the “linear contextual effects model” of
Freedman et al. (1991), who propose a world in which BP =
PR =0+ ouD;. In this world, Republicans and Democrats
in each precinct support the proposition at the same level,
and that level is an exact linear function of D. Because, by
construction, all voters are either Democrats or Republi-
cans, #” = R implies P; = f° = AR, which in turn implies
the following exact linear relationship between P and D:
Pi= g + oD, Alternatively, we might be in a world in
which the constancy assumption often associated witl the
Goodman (1959) model holds. In this case, fP = f° and
SR = R for all i, but f° need not equal SR, In this world, we
would have (by the accounting identity)

Pi=f°D; + fR(1 - D)),

Or, rearranging,
Pi= 4 (P = D,

Here, too, we would also expect to see an exact lincar rela-
tionship between D and P. Thus, without some knowledge
of or assumption about the relationship between D and /P
and f* (such as constancy or linear contextual effects), we
cannot pin down the distribution of 2 and R from aggre-
gate observations on P and D.> When we observe an exact
linear relationship between P and D, we cannot tell which
of these two models (or infinitely many other models) is
correct. This is only the simplest version of the sort of inde-
terminacy inherent in this problem.

To overcome this indeterminacy, King (1997) follows
Goodman (1959) in assuming that f° and f® are indepen-
dent of D. Or, in the parlance of the literature, there i no
“aggregation bias.”* Consideration of aggregation bias can
be traced at least to William Robinson (1950).

The problem with the assumption of independence is
that it is very hard (if not impossible) to verify empirically.
Tests for linear relationships between the Ps and D have
been proposed by Christopher Achen and W. Phillips Shiv-
ely (1995), but these tests are relatively weak, as shown by
Stephen Ansolabehere and Douglas Rivers (n.d.). Figure 3
shows scatter plots of P and fR against D for our data.
Note that there is only a very weak relationship between
the fis and D. Thus, in this case, the assumption of inde-
pendence appears to very nearly hold. As we will see,
meeting this assumption is central to the success of the
method.

The attraction of this assumption is that, if true, it buys a
lot.> Goodman (1959) notes that if this assumption holds,
one can estimate the means of the fis by simple regression
techniques (the ecological regression model described

1

]

FIGURE 3
Scatter Plots of g and g®

Checking for possible aggregation bias

Note: Only a weak relationship exists between Por A and D in these data on which King’s method should work
well. The solid} line through the scatter plot is an OLS regression line.
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later). Subsequent econometric scholarship has demonstrat-
ed that with this assumption, other moments of the joint dis-
tribution of fs can be estimated (cf. Hildreth and Houck
1968; Beran and Hall 1992). King found that this assump-
tion along with an assumption about the parametric family
of the fs allows the full joint density of the fs to be esti-
mated. Finally, Rivers (1998b) has shown that this assump-
tion alone allows the joint distribution of the fs to be esti-
mated nonparametrically.®

It is important to note that King (1997) makes this
assumption.” Many scholars have considered aggregation
bias (the violation of this assumption) to be the problem in
making ecological inferences and therefore may have been
misled by King’s solution.? King’s method does not pro-
vide a true solution to the problem of aggregation bias.
That is, as conventionally discussed and implemented,
King’s model requires the same conditions as conventional
ecological regression to avoid aggregation bias. As is sub-
sequently shown, King’s method is less sensitive to the
presence of aggregation bias than are other methods. Nev-
ertheless, it is not immune to the problem. Rather, El
should be thought of as a “solution” in the sense that,
assuming its assumptions hold, it allows the user to make
more efficient estimates BY and BR than can be made using
conventional regression techniques and also allows the
estimation of additional quantities of interest such as the
fPs and fRs.

The Distributional Assumption: The Truncated
Bivariate Normal Distribution

Beyond the assumption of independence, King (1997)
makes an important assumption about the parametric dis-

tribution from which the fs are drawn. The distribution
that King chooses is a truncated bivariate normal distribu-
tion (TBVN). In particular, King chooses a bivariate nor-
mal family in which all the outcomes outside the unit
square are truncated. Aside from having support on the
unit square, this distribution has a number of desirable
properties. Its conditional distributions are simple univari-
ate truncated normal distributions, as is the univariate dis-
tribution over any line through the TBVN. Because the
feasible sets for the fs are lines, the fact that the distribu-
tion over any given line through the truncated bivariate
normal is easily derived is quite useful. It greatly simpli-
fies the task of making point estimates of each of the
precinct fs. Moreover, the distribution allows for a wide
range of empirical situations. The fs can be highly con-
centrated or relatively dispersed. The distribution can be
highly skewed or relatively symmetric. The main restric-
tion that the TBVN puts on the data is unimodality. That
is, there must be a most likely pair (6P, f*) such that all
other pairs are strictly less likely, and each pair of fs that
we consider as we move away {rom this most likely pair
(along any line) must be strictly less likely than the last. In
essence, there must be only a single mountain, not a whole
mountain range. Nevertheless, the TBVN accommodates a
wide range of possibilities, requires the estimation of a
small number of parameters, and has convenient forms for
its conditional distributions. All of these reasons make it a
good choice for the application. Figure 4 shows the esti-
mated TBVN density for the proposition voting data. In
this case, most of the (A7, %) are estimated to be concen-
trated relatively close to the mode.

The TBVN distribution is written as follows:

/}ll

/fl) 1

(the bivariate densivy function).

FIGURE 4
Estimated Joint Distribution of p” and p®

Note: Two renderines of the same estimated TBVN normal distvibution of (52, R) points in the proposition voting
data. The left panel shows the view from the top (isu-density contours). The right panel shows a view from the side
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The numerator is the bivariate normal distribution, and the
denominator is a normalizing constant (for given narameter
valires) that forces the distribution to integrate o 1. This
expression reveals both the advantages and the discdvan-
tages of the TBVN. On the one hand, because the main
component of the distribution is the bivariate normal densi-
ty function, one can draw on many results in calculating the
likelihood of any particular set of values. On the other hand,
the denominator is a bivariate normal cumulative distribu-
tion function. This integral has no closed forr:. solution and
thus must be evaluated by numerical integration.

As T noted earlier, Rivers (1998a) has shown that inde-
pendence alone is sufficient to estimate the joint distribution
of the fs consistently. However, such an approach does not
seem particularly practical, because accurate nonparametric
estimates of the joint «’stribution of D and P cannot be
made from samples of the size usually associated with cco-
logical inference problems. Morcover, it should be noted
that King (1997) can use the assumption of the truncated
bivariate normal to rciax the independence assumption.
King describes extensions to his basic mode] that allow the
Bs to be functions of D and other covariates. The identifica-
tion and tractability of these models depends in large part
on the assumption of TBVN. As Rivers (1998b) pointed out,
if one assumes that the fs follow an untruncated bivariate
normal, King’s extended model is not even identified. This
lack of identification is problematic because, in many
instances (including the example presented here), the
degree of truncation is small. In such cases, the TBVN
approaches the untruncated bivariate normal and our ability
lo estimate the relationship between 1 and the fs is
extremely limited. Nevertheless, it is important to note that
the imposition of a distributional assumption (if correct)
both increases the efficiency of the estimates and may in
some situations allow the independence assumption to be
relaxed.’

Inferring the Distribution of the Unknown Parameters

Given the assumptions that the distribution of the fs is
independent of D and that the fs follow a TBVN distribu-
tion, the obvious next step is to derive a way of inferring the
parameters of that TBVN from observations on P and D,
King’s (1997) estimator uses the method of maximum like-
lthood.'” This method has many advantages. It is almost
sure (o generate valid estimates of the parameters. More-
over, it will generate consistent and minimum-variance esti-
mates. On the other hand, the method is very computation-
ally expensive and obscures the links between King’s

S IORICAT, MEFITON

method and conventional ecological regression. T high-
light the connection with cornventional ecological regres-
sion and to offer a less computationally burdensome esti-
malor, I now derive a method-of-moments estimator for
King’s method.

My method-of-moments estimator proceeds in two steps.
First, I fint five moments of the joint distribution of the fis
from observations on P and 1. Second, I use these five esti-
mated moments to solve for the parameters of the TRVN.

In developing this estimator, at each stage 1 compare the
estimates of the moments and parameters obtained by my
method-of-moments approach and King’s ecological esti-
mators v ith estimates of these quantities made directly
from the fis themselves. In this way, the reader will be able
to -=e, at least for this example, how much information is
lost when we must estimate these quantities from the eco-
logical data, rather than directly.

A Method-of-Mom:nis Approach

The first order of business is to estimate the means, vari-
ances, and covariance of f” uad SR The following two
propositions adapted from well-known econometric find-
ings about models with random coefficients describe how
one can do this using simple regression techniques.

Proposition 1: If P and R are independent of D; and are
independently and identically distributed for all precincts | =
1,2, ..., I, then consistent estimates of E(S°) = EP and
E(f®) = ER can be obtained by the ordinary least squares
(OLS) regression:

P;= EDD, + ER(l —D[) + &;.
Let £D be the estimate of E(P) and £R be the estimate of
E(f").
Proof: See Goodman (1959) or Hildreth and Houck (1968).

Proposition 2: Let Q,-Z be the squared residuals from the
regression of P on D. If §P and SR are independent of D,
and are independently and identically distributed for all
precincts i=1,2, ...,/ then V() and V(%) and Cov(fP,
A*) can be consistently estimated by the OLS regression:

2= VPD? + VR(1 - D)? + C[2D(1 - D)] + "

Let ¥ be tAhe estimate of V(fP), PR be the estimate of
V(f®), and C be the estimate of Cov(8P, /).

Proof: See Hildreth and Houck (1968) or Judge et al. (1985,
chap. 19).

To see the intuition behind these propositions, note that
one would like to treat the accounting identity as a regres-
sion equation. That is, one would like 10 estimate the 1ol-
lowing regression:

Pi=fPD; + BRI - D).
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Of course, as a regression, this equation looks a bit strange.
First, its parameters P and SR vary across observations.
Second, the equation has no error term. The problem of
regression models with randomly varying coefficients has
been widely treated in the econometrics literature (cf. Hil-
dreth and Houck 1968; Griffiths 1972; and Judge et al.
1985, chap. 19). The solution is to rewrite the identity as

Pi= (EP + ¢P)D; + (ER + £)(1 - D),

where EP and E® are the means of P and f®, respectively,
and gP = B — EP and gR = R — ER. Rearranging the above
equation, we find

P,‘: EDD,‘ + ER(I - l),) + EiDD,' + SiR(l - Dl>

= EDD,' + ER(l - D‘) + &
or

P.= ER 4+ (EP - E)D; + &, 6)

where g = ¢PD; + ¢R(1 — D). Equation (6) looks much more
like a conventional regression having fixed parameters and
an error term. Fitting equation (6) is what is conventionally
referred to as Goodman’s (1959) ecological regression. In
Goodman’s model, estimates of £ and ER are taken as esti-
mates of B” and BX. E” and £ will be consistent estimators
for BP and BR so long as the total number of voters in each
precinct is uncorrelated with P + AR (see King 1997, 61)."!
Proposition 1 asserts that this equation can be estimated
consistently by OLS regression. However, as Goodman
(1959) himself noted, the residual in equation (6) is het-
eroskedastic. In particular,

V(&) = V(E)DZ + V(eR)(1 = D)? + 2Cov(eL, eR)D(1 - D).

Thus, one can achieve more efficient estimates of E® and EX
by using a feasible weighted least-squares estimator that
uses square roots of the predicted values of the regression in
proposition 2 as weight<.'2 In either case, the notion is that
one can use simple regression techniques to estimate the
means of the unobserved fP and fR. 1t should be pointed out
that this technique does not incorporate the logical bounds
on the EP and ER. That is, although EP and ERAmust both lie
on the unit interval, there is no guarantee that £ and £ will
do so (in finite samples). Even if the assumptions of the
model hold, we may still obtain infeasible estimates. How-
ever, unless the sample size is very small or E and E® are
very close to 0 or 1, this should not be a problem. Estimates
of E” and £ that lie well outside the unit interval are more
likely the result of aggregation bizs.'3

According to proposition 2, heyond the means of the fis,
we can also estimate the variances and covariance. Sor:a
intuition as to why this is true comes simply from inspect-
ing the expression for the variance of ¢ given above and not-
ing that E(¢?) = V(). Agai: . there is no guarantee that the
OLS estimates of the varizaces and covariances will be fea-
sible. That is, the cstimated variances may be negative or
the estimated covariance and variances way jraply a corre-

lation between fP and fR that is greater than 1 or less than
—1. In these cases, one can use constrained regression tech-
niques to obtain feasible estimates. Such estimators have
been suggested in the literature (e.g., Schwallie 1982).
Although infeasible variance and covariance estimates may
indicate a violation of the independence assumption, they
often occur simply by chance because of the relatively large
degree of uncertainty that is often involved in their estima-
tion.

Together, propositions 1 and 2 suggest a two-step tech-
nique for inferring the means, variances, and covariance of
fP and pR. First, regress P on D, then regress the squared
residual from the first regression on D2, (1 — D)2, and 2D,
(1 — D}). One can then achieve more efficient estimates by
using predicted values from the second regression to weight
the first regression. Also, if need be, one can use con-
strained regression techniques to obtain feasible estimates.

Table 2 contains the estimated means, variances, and
covariance of P and SR The second and third columns
show the ecological estimates made by the procedure previ-
ously described. The fourth and fifth columns show esti-
mates made from the usually unobserved fs themsclves.
These “direct estimates” are just ordinary summary statis-
tics for the proportion of Democrats and the proportion of
Republicans who supported Proposition 156 across 301
precincts.'* Here we see that with near-independence
between D and the ffs and 301 precincts, ecological tech-
niques very accurately recover the means of f” and f®. The
ecological estimates are nearly identical to those made from
the observations on ° and R directly. There is, however,
evidence of information loss. The standard errors from the
direct estimates are four to five times smaller than the stan-
dard errors from the ecological estimates.

There is somewhat less information in the ecological data
for estimating the covariance and variances. We see larger
differences between the ecological and the direct estimates.
We also see estimated standard crross that are ten to fifteen
times larger for the ecological estimates. Thus, even when

TABLE 2
A Few Estimated Moments of the Joint Distribution of
and f* across Precinets: Estimated Means, Variances, and
Covariance of g7 and %

Ecological Direct
estimate esthmate

Parameter Estimate SE Estimate SE
E(B™ 4911 0244 4911 0042
E(PR) .3496 0127 3518 0023
V{F") L0042 0004 0057 0065
\'(/)’R) 0031 0619 0033 L0002
Cav(i®, ) 0021 0033 0017 .0003
Corr{/P, % 61 40
N 301 301




the independence assumption is very nea‘rly 11.\01- and tl.w
sample size is relatively large, we havg: only d limited abil-
ity {o recover the variances and covariance of the Bs. 'ch-
ertheless, the cstimates ar¢ fairly reasonable. The vartance
of ° is found to be larger than that of p* in cach case, and
the estimated covariance is simila: in magnilude.

Overall, when the independence assumption is met, the
regression technique developed above does & rather good
job of cstimating the means, variances, and covariance of
the two unobserved variables. Although there is a fair
amount of lost information, it is nevertheless impressive,
and indeed somewhat comforting, that so much information
can be culled from the aggregate data.

Moving from the Means and Variances
to the Parameters of the TBVN

As noted catlier, one of the main contributions of King’s
method is that it goes beyond means and variances to fully
describe the joint distribution of the Ps. This is accom-
plished through the assumption that the joint distribution of
the f3s is truncated bivariate normal. What we now need is a
mapping from the five estimated moments (means, vari-
ances, and covariance) of A° and f* to the parameters of a
truncated bivariate normal. Solving for the parameters of
the TBVN in this way is by no means algebraically straight-
forward. §. M. Shah and N. T. Parikh (1964) give equations
for the mapping between the parameters of the TBVN and
moments estimated above,

T2 (1tp, 1R, Tps OR; opr) —> (EP, ER, VP, VR, O),

where T is a mapping (set of functions) that describes each
mean, variance, and covariance as a function of the five
parameters of the distribution. Because there were a few
typesetiing errors in Shah and Parikh’s article, I give these
equations in appendix A. Plugging in the estimated
moments found in the previous section, I have a system of
five equations (one for each moment) and five unknowns
(one for each parameter of the distribution). The solution to
this system of equations cannot be achieved analytically.
That is, there is no way to express the five parameters as a
function of the five moments. However, it is possible to

solve the system numerically. Formally, the problem is to
find

]Ll: (ED) ER7 VDs \/R7 C) - (,uDv ,UR» Jp, ORs O—DR)'

1 do this by using Newton’s method, which involves an iter-
ative series of numerical approximations that converge to
the solution. Although this method involves a considerable
amount of computation, it is much less computationally
intensive than the estimator for the TBVN parameters that
King (1997) employs and that is described below.

Table 3 contains the method-of-moments and maximum-
likelihood estimates of the parameters of the distribution of
the fs made from direct and ecological observations. Note

MSTORICAL T

TABLE 3
Estimuted Paramicters of the Truncated Bivariate MNormal
(TBVN)
MOM ML
[arameter Estimate SE Estimate SE
Ecological estimate
un 0.4912 0.0244 0.4835 0.0309
e 0.3496 0.0127 0.3532 0.0159
Op 0.0649 0.0500 0.0886 0.0364
Or 0.0559 0.0166 0.0615 0.0109
OpR 0.0021 0.0035 0.0005 0.0028
p 0.6063 0.0925
Direct estimate
Up 0.4911 0.0043 0.4911 0.0043
Iy 0.3518 0.0033 0.3518 0.0033
oo 0.0754 0.0225 0.0754 0.0879
OR 0.0573 0.0201 0.0573 0.0863
TpR 0.0017 0.0003 0.0017 0.0621
P 0.4020 0.4020

Note: Estimates of the parameters of TBVN were made both by maximum
fiketihood (ML) and by the method of moments {MOM) using alternatively
direct observations on 8 and A% and ecological observations of Pand D. The
standard errors estimated for the MOM estimators were calculated using the
“delta” mothod.

that because there is very little truncation in our example,
the estimated parameters of the truncated bivariate normal
are very close to the estimated moments."” Indeed, the esti-
mates of pp «nd ug are neatly identical to the estimates of
EP and ER. Again, in this case, there is relatively little dif-
ference between the direct and indirect estimates. In gener-
al, the estimated standard errors arc larger in the ecological
case (as we would expect). Most interesting, the estimated
standard errors for op and oy are larger for the direct esti-
mates than they are for the ecological estimates in which
maximum likelihood was used.'®

One problem this method faces is that the TBVN places
additional restrictions on the feasible values of the means
and variance beyond the ones applied above. For example,
because the TBVN is unimodal, not only does the variance
of cach of the fis have to be positive but it must also be less
than 1/12—the variance of the least unimodal (i.e., a uni-
form) distribution on the [0,1] interval. Moreover, as the
variance approaches 1/12, the mean must approach 0.5. As
the variances 0 and R both go to 1/12, their absolute cor-
relation goes to 0 or 1. Figure 5 contains an example of
these constraints in the univariate case. The figure shows
the maximum possible variances of a truncated normal ran-
dom variable 3 with a given mean as well as the maximum
possible variance that any random variable on the {0,1]
interval can have for a given mean. There is considerable
room for the means and variances to fall outside those fea-
sible for the TBVN, even when the independence assump-
tion holds. These are the simplest restrictions. More gener-
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FIGURE 5
Feasible Mean Variance Pairs for Distributions on the [0,1] Interval
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Note: All of the points under the dashed curve are feasible mean and covariance combinations for a distribution
with support on the {0,1] interval. All of the points under the solid curve are feasible mean and variance combina-
tions for some truncated normal (TN) distribution. The maximum of the dashed curve is 1/4, the variance of a
Bernoulli distribution. The maximum of the solid curve is 1/12, the variance of a uniform distribution.

al restrictions limit the maximum variance and correlation
that can hold for a given set of means, or vice versa. If the
Ps do in fact follow the TBVN and the number of observa-
tions is reasonably large, these restrictions present few
problems. For most real-world data, one must put con-
straints on the estimated moments to ensure that the inverse
moment calculation is possible. However, these moment
restrictions allow the TBVN assumption to be tested in the
data. On the other hand, because the exact form of the
moments restrictions is complicated, a maximum-likeli-
hood method that directly estimates the parameters of the
TBVN (such as King’s 1997 estimator) may be preferable.

A Maximum-Likelihood Approach

King’'s (1997) method estimates the parameters of the
TBVN distribution of the fs directly and simultaneously by
maximum likelihood.!” T present a derivation of the likeli-
hood function in apjpendix B. The function involves two
additive terms. One term is a weighted least-squares regres-
sion minimand that is similar to the weighted regression for
estimating the means of the ffs given in an earlier section
describing the method-of-moments approach. The other, a
more complicated expression, accounts for the fact that the
fs must fall within their logical bounds. This likelihood
feaction must be maximized numerically and involves the
repeated calculation of bivariate and univariate normal

cumulative functions. Although, in theory, the maximum-
likelihood estimator is clearly superior to the method-of-
moments estimator, inaccuracy in the calculation of the nor-
mal integrals combined with the inherent difficulty involved
in estimating the os described earlier sometimes leads to
convergence problems and slow performance in this esti-
mator. Given the estimated us and os, King’s procedure for
calculating the fs and Bs is basically equivalent to the pro-
cedure described next.

Estimating the Precinct-Level Quantitics of Interest

Having described a method of estimating the moments of
the distribution of the ffs and from those the parameters of
their assumed underlying TBVN distribution, I now turn to
how one can use these parameters to estimate each f,° and
SR, Generating estimates of each 8P and R conditional on
P; and D; is a major innovation of King’s (1997) method.
Armed with these estimates, one can then calculate BP and
BR or any other quantity that might be of interest. A full
treatment of how to obtain estimates of each S and X is
given in appendix C. Here, I give a graphical intuition for
the method by which this is accomplished. The way these
estimates : re derived highlights the ways EI uses all of the
information contained in the structure of the proilem.

The estimated parometers of the TBVM define a distribu-

ton of (A, %) pairs over the unit square. This diztribution
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FIGURE 6
Estimated Distribution of 2 aud % Conditicusl on P and D for Two Precincts

Note: These graphs place the feasible (42, f%) pairs for two of the 60th State Assembly District’s precincts onto the
graphs in figure 4. The right-hand panel demonstrates one of the vice properties of the TBVN distribution. The dis-
tribution of points over every precinct feasible set (line through i1 graph) is a truncated univariate nornal distribu-
tion. This fact greatly facilitates the calculation of precinct-level quantities of interest.
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is shown in figure 4.'® Conditional on P and D, the feasible
(f°, B*) pairs lie along a single line through the unit square
(see figure 2). The trick to estimating the precinct quantities
is to compute the mean of the distribution of A and SR over
each of these feasible sets.

Figure 6 shows the distribution of (A7, &) pairs over the
feasible sets for 2 of the 301 precincts. Note that the distri-
bution over each of the precinct lines appears to be (trun-
cated) normal—and indeed it is. This is a useful feature of
the TBVN distribution. Because the distribution over the
[easible set is normal, it is quite straightforward to find the
cxpectation (mean) over the line using well-known formu-
las for the expectations of truncated normal variables. These
estimated expected values serve as our estimates of each /P
and fiR.

Figure 7 contains the feasible sets for all 301 precinets in
the data. One then forms estimates of the fPs and fRs by
taking the expectations over each of these feasible sets. Fig-
ure 8 graphs the predicted ffs against their true counterparts.
The method-of-moments and King’s (1997) estimator pro-
duce very similar estimates (most of the points in the top
two panels of the figure are close to the 45° line). Bot
methods produce estimates that are reasonably close to the
observed values.!” In table 4, the estimates of the district-
level quantities of interest BP and B are compared. Note
that all the methods produced quite good results in this case.

Although the point of this example was not to demon-
strate the effectiveness of King’s (1997) approach (whether
estimated by maximum likelihood or by the method of
moments), the example does demonstrate that the approach
can work very well when its assumptions are met. Tt is use-
ful to note that because these assumptions are basically the
sam> as those made by Goodman’s (1959) ecological

FIGURE 7
King’s Tomography Plot
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Note, Each line represents the set of feasible (4P, %) pairs for one of the 301
precincts in the 60th State Assembly District. The circles are iso-density
contours of the TBVN distribution. The outer contour circumscribes 80 per-
cent of the density of the distribution.

regression, it also works well in this case. Although this
might suggest that one should simply use ecological regres-
sion, such a conclusion would be unwarranted. First, King’s
method allows estimation of quantities other than B® and BR
(the districtwide proportions). Second, King’s mecthod
restricts all (f°, fR) pairs so that they fall on their feasible
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FIGURE 8
Predicted fs against Their True Counterparts

ML versus MOM estimates

Actual values versus ML estimates

Actual values versus MOM estimates

Note: Plots the distributions of the precinct-level estimates of the percentage of Democrats (f°) and the percentage
of Republicans (§7) that supported Proposition 156 agiinst each other and against the “irue” values obtained from
individual-level data. The plots include both the method-of- moments estimates (MOM) developed here and esti-
mates using King’s maximum-likelihood (ML) estimator.
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sets. Thus, any quantities estimated by King’s approach are
guaranteed (o ve, at the very least, feasible. This is not true
of ecological regression, even if its assumiptions are met.
Indeed, assuming that the independence assumption is met,
it requires some effort o conce ot a circunstance in which
one would not want to use King’s method over the tradi-
tiomai ceolngical regression model.

Aside from what are besically efficiency tinprovements,

King (19975 also claimg that his model is more robusi (o

violations of the independence assumption. This claim of
robustness comes in two forms. King notes that his model
can be extended in ways that explicitly incorporate depen-
dence between the Ds and the fis, as was discussed briefty
carlier. Beyond this, King claims that his model is relaiive-
ly robust to violations of the independence assumptions.
This claim Las proven more controversial (see Cho 1994 or
Freedman, Kicin, and Ostland 1998 and resposses). 1 con-
sider this claim in the roxt section,
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TABLE 4
District-Level Estinintes of the Percentage of Democrats and Republicans Sopporting
Proposition 156, by Various Methods

Goodman’s

ER MOM 131 El Actual

Quaii.ity Cstimate estimate estimate vajue
Proposition support among

Democrats 0.492 0.488 0.481 0.485

Republicans 0.349 0.346 0.346 0.347

moments; Bl = ecological inference.

Note: All three methods produced results very close to the true visiues. ER = veological regression; MOM = method of

Violating the Independerice Assumption

In this section, I consider the degree to which King’s
method is robust to violations of the independence assump-
tion. For this inquiry, I use 306 proposition-assembly dis-
trict pairs for which T have individual-level data. In particu-
lar, I make ecological inferences about the percentage of
Democratic and Republican state assembly voters who sup-
ported each of 13 propositions in each of 25 districts. For
each of these pairs,? I comparc the estimates of B® and BR
to their true (realized) values.

I'make the ecological estimates by four methods. Three of
these—King’s (1997) maximum-likelihood estimator, my
method-of-moments estimator, and Goodman’s ecological
regression (ER)-—are by now familiar. In addition, to these
is a fourth estimator that 1 call fastEl, which is basically the
same as the method-of-moments estimator except that rather
than using 7' to find the parameters of the TBVN, it simply
equates the moments and the corresponding parameters of
the TBVN. The method is fast because it skips this compu-
tationally difficult step. Of course, the estimates of the
TBVN parameters made in this way are biased and incon-
sistent. However, if the degree of truncation is small, as was
the case above, the size of the bias will be small. In any
event, fastll] is a simple and easy-to-implement routine that
involves no numerical maximization or evaluations of the
bivariate normal cumulative distribution function. Because
of its simplicity, it provides a quick and easy way to approx-
imate the results that we would find using King’s method.?!
Moreover, fastEl allows us to see how important getting the
parameters of the TBVN “right” is to the success of King’s
model. That is, if most of the advantage of King’s model
comes from constraining the /s to fall within their feasible
scts and not on precisely estimating the parameters of the
TBVN, then the performance of fastEl should be similar to
that of King’s maximum-likelihood estimator.??

Figure 9 plots the slope coefficients of regressions of the
true P and true SR for each of the 306 proposition—assem-
bly district pairs. Note how [ar many of these points fall
from the origin (the point at which neither ° nor f® is a lin-

FIGURE ¢
Slopes of Regressions f° and f* on D across 306 Proposition—
Assembly District Pairs
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Nate: Graph shows slope cocfficients for regressions of 2 and % on D for
each proposition—assembly district pair. Each point represents one proposi-
tion—assembly district pair. Note that many of the points fall far from the
origin (the point at which there would be no linear relationship between f°
or f and D).

ear function of D). In other words, among these data sets,
we find many that grossly violate the key independence
assumption of King’s mcthod as well as others that only
modestly violate this key assumption. Thus, these data pre-
sent a good test of the robustness of the various estimators
to aggregation bias.

Table 5 contains the mean and maximum absolute devia-
tion between the true and estimated values of BP and BR
found by using each of these four methods. The ER behaves
as expected in the presence of aggregation bias (the viola-
tion of the assumption that D and the fs are independent).
The average differences between the Goodman estimates
and the truth are larger than under the other methods, and
the maximum differences are quite far from the truth. The
maximum deviation for BR demonstrates the infeasible esti-
mate problem inherent in ER. The maximum difference of
1.073 could have been produced only by an estimated BR
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TABLE S
Deviations of District-Level Quantities of Interest
from Actual Values

Mean absolute Max. abgolute

deviation deviation

from truth _ﬁ;om truth
Method BP BR BP BR
ER .092 123 .396 1.073
MOM EI 108 122 678 756
FastEL 078 .099 310 523
ML EI .080 .099 322 487

Note: Average absolute “error’” and maximum absolute “crror” of estimates
of the percentage of Democrats (BY) and Republicans (BX) supporting
Proposition {56 for 306 proposition—assembly district pairs, by four meth-
ods of ecological inference.

greater than 1 or less than 0. Averaging across the two dis-
trict-level quantities of interest and the 306 data sets, erross
made by King’s (1997) method were 16 percent smaller
than those made by ER.

The method-of-moments estimator avoids the problem of
logically impossible paramcter estimates but otherwise per-
forms no better than Goodman’s ER. Because the estima-
tors of the moments can be badly biased when the indepen-
dence assumption is violated and the estimates of the
parameters of the TBVN from the moments arc very sensi-
tive to the estimates of the moments, this result should not
be surprising. In many instances, I had to constrain the esti-
mated monents to calculate the parameters of the TBVN at
all. All of these problems limit the feasibility of the [ull
method-of-moments estimator when the assumptions of the
model (either independence assumptions or distributional
assumptions) are violated.

However, the fastEI estimator is more eftective. Using
the moments themselves as estimators for the parameters of
the TBVIN and calculating the precinct fs in the same way
as El, leads to substantial improvement over ER. The max-
imum-estimation errors arc greatly reduced compared with
their valucs when ER is used. The fastEl estimator improves
the prediction by 2 percentage points on average ovet lhe
Goodman (1959) regressior.

The performance of King’s (1997) estimator is very sim-
ilar to that of fastEl. By using all avail:ble information in
the calculation of the parameters of the TBVN (and by
including priors on the parameters), EI outperforms the
method-of-moments estimators on these data. Even though
it no doubt produces better estimates of the parameters of
the TBVN, EI ofters no improvement over the fastEl proce-
duwe in these data. Given that the distributional and inde-
pendence assumptions arve strongly rejected in many of the
data sets, this is perhaps not surprising.

Faced with a set of problews in which the independence
assumption is often vielated, all of the methods considered
made signiticant errors. King's {1627) me thod provided

N

better estimates than the standard ecological regression
model. However, none of these methods was particularly
robust, making average errors of at least 8 percentage poits
and maximum errors of at least 30 percentage points.
Table 5 does not directly address the question of whether
King’s method is more robust than ecological regression.
Figure 10 addresses this guestion. For each of the 306 data
sets, I ran regressions of the actual ° and f® on D. The esti-
mated absolute slope coefficients for these regressions arc
plotted in figure 9. The scatter plots in figure 10 plot these
same estimated slope coefficients against the absolute error
of the estimated district-level quantity of interest (8° or B®)
for each of three ecological inference methods. In every
case, as the degree of violation of the assumption that D and
a given f increases (larger slope coefficient), the average
absolute error of the prediction increases. The prediction
line through each graph is a locally weighted least-squares
(LOWESS) regression line. This LOWESS line allows for
nonlinear data fitting and is quite revealing in this case.
Note that from all three methods, when the independence
assumption is met (values of the absolute slope coefficient
near ), the prediction errors are quite srnall. Furthermore,
as the degree of violation of the independence assumption
increases from 0, the predicted absolute errors also increase.
However, the rate at which the estimation errors increases
as a function of the degree of nonindependence differs
greatly among the methods and between the estimates of the
Democratic and Republican support for the propositions.
For each method, the estimate of Republican support is gen-
erally more strongly affccted than is the estimate of Demo-
cratic support. This result is a consequence of the fact that
Republicans are the minority of voters in most of the Los
Angeles County assembly districts. Because Republicans
are the smaller group, when a given number of proposition
voters are incorrectly attributed to the wrong party, the mis-
attribution has a larger effect on the estimated fraction of
the Republicans who support the proposition than it does on
the estimated fraction of Democrats who support the propo-
sition.” Comparing across methods, we found that EI and
fastEl do in fact demonstrate some robustness to violations
of the independence assumption. Although the absolute
errors were increasing in the degree of dependence of the fis
on D for all methods, the errors made by EI and fastEl were
much less responsive to the degree of dependence. Indeed,
we see that past a certain level of dependence, the errors
made by EI and fastEl hardly increased at all. The explana-
tion is that the logical bounds the methods impose on the
estimates in some sense “cap” the size of the potential
error.* Note also that there are very important cross-cfiects.
That is, 4 violation in the assumption that f° and D are inde-
pendent has important consequences not only for the esti-
mation of BP but also for the estimation of 5%.2 This is true
(or ecological regression as well as for the other methods.
Overall, King’s (1997) method appears to be more robust
to violations of the independence assumiption than Cood-
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FIGURE 10
Effcct of Aggregation Bias on Estimates of the District-Level Quantities of Interest

Absolute error in BR

Note: Figure shows the relationship between absolute prediction errors in the districtwide shares of Democrats and Republicans supporting each proposition and the
degree of violation of the assumption that D and the fs arc independent as measured by the estimated linear effect of D on cach fi. The best fit lives shown in each
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man’s ecological regression in the sense that King’s method
produces superior estimates when the independence
assumption is violated. At the district level, EI improved by
16 percent the predictions of ecological regression. Howev-
er, in an absolute sense, King’s method (at least in its basic
form) is not robust to violations of the independence
assumption. That is, when applied to series of data sets that
substantially and increasingly violated the independence
assumption, the EI estimates substantially and increasingly
missed their mark.

Conclusion

King’s (1997) model represents a real advance in the
technology of ecological inference. As demonstrated

above, it is an advance that builds directly on Goodman’s
(1959) pioneering work. The method-of-moments esti-
mator developed here highlights this connection. In
essence, King’s method can be thought of as a truncated
random-cocfficients version of Goodman’s ecological
regression. By including information about the logical
bounds of the parameters, King’s method improves the
efficiency ol the estimates of the district-level quantities
of interest and allows the user to make inferences about
the precinct-level quantities. Indeed, King’s method
allows the analyst to make myriad statements about the
distribution of precinct quantities. Before King, no such
technology was readily available.?® In this sense, King’s
estimator is a solution to important problems of ecologi-
cal inference.
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On the other hand, in its basic and most common formu-
lation, King’s (1997) method makes the same independence
assumptions that are used in ecological regression. Concern
about the empirical validity of this assumption has been
expressed since Robinson (1950) and Goodman (1959).
Indeed, this concern has been so central to the literature that
it is commonly thought of as the problem of ecological
inference. In this sense, King’s model is not (in general) a
solution. Although King’s model is more robust to aggrega-
tion bias than conventional regression techniques, it is not
robust in an absolute sense. That is, violations of the inde-
pendence assumption will in general lead to estimated
quantities that are far from the truth.

With respect to the problem of aggregation bias, King’s
method may provide a partial solution in two ways. First,
extensions to King’s method do indeed allow analysts to
relax the independence assumption. Second, King offers
some diagnostic tools to detect situations in which the
independence assumption has been violated. A careful
treatment of these contributions is beyond the scope of this
article. Readers should consult Cho (1998) or Freedman,
Klein, and Ostland (1998) for a censideration of these fea-
tures.

This study is meant to give the reader a be!cr sense of
King’s method and its connection to the past. The main
conclusion is that EI offers a good technology for ecologi-
cal inference for cases in which the independence assump-
tion is not grossly violated. It is not, however, a panacea. In
the end, we must remember that aggregation involves the
loss of information and that no statistical method can recov-
er what is lost. Thus, as with all statistical methods, King’s
EIl must be used with caution and with careful consideration
of what it requires and how it works.

Keywords: ecological inference, random coefficients, ag-
gregate voting data, California assembly elections

APPENDIX A
Moments of the TBYN

Recursion eqguations for, and the first two moments of, the doubly trun-
cated bivariate normal distribution are given by Shily and Parikh (1964).
The equations they present include several small errors. Because [ know of
nowhere in which these equations appear without error in the literature, [
present them here following Shah and Parikli’s (1964) notation. If x and y
are drawn from the double truncated standard bivariate normal distribution,
their moments are given by:

_ Ghpan?)
Im o5 21-p%)
s x"y'e
E(x",y") = “- ) dydx,

Wk 2ma 1= p® R(L b m,k, p)

where f1 and & are the lower truncation points on x and y, [ and m are the
uppes truncation points on x and v, p i the correlution between x and y, and
R(, hyomy koY is the value of the untruncated bivariate normal cumulative
distribution over the domain of x and y. Letting 20x) be the stendard nuomal
dansity function and
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the first 2 moments of the joint distribution can be written as:
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Once can invert these to caleulate the parameters [rom the estimated sample
moments. However, there is no explicit form for these “inverse” moment
functions. Thus, numerical methods must be used. Those familicr with the
singly truncated bivariate normal distribution or bivariate disitibutions
truncated on only onc variable (used heavily in models of sample selec-
tion) will recognize the general form of these equations and can verify that
the equations given here converge to the equations for these more familiar
distributions as the relevant limits of integration go to infinity or negative
infinity. One interesting feature of these moment equations is that the cor-
relation between x and y can be nonzero even if p is zero.

APPENDIX B
Derivation of the Likelihood Function

The presentation of the derivation of the likelihood function used in EI
is relatively intuitive, but rather involved. To present the function, I first
present the likelibood function that could be used if P and SR were direct-
ly observed in the data. et
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Also, following King (1997, appendix D) let
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The distribution for the truncated bivariate normal bounded by the unit
square is then given by
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“the distribution of the fs conditional on the observed P and D is found by

exploiting well-known properties of the bivariate normal distribution. Note
that

)yD B 1 0 /}D .
P D -] g
letting

T 0
iD (-D)

and using well-known properties of linear transfo:tnations of normally dis-
tributed variables,
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We can now facter this bivariate normal distribution into a conditional and
marginal distribution, that is, [,(7%, PIAp, AZA) = [ (B PYL(P). Note th
both the conditional and marginal distribution are themselyes . variaic
normal distributions.

We now integrate over the feasible values of /P to find the toral likeli-
hood of observing a precinct with the given P and D. Again following
King, define
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Thus, the full probability function defining p and 22 in terms of the observ-
bles (P and D) is
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where gp = Dup + (1 ~ D)ug and op = Dafy + (1 ~ N0k + 2(1 = D)Dapg
taking logs and summing over i observations we find
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To maximize In L, solve the first-order conditions, for example,
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Note that the orthogonality condition is somewhat different from the one
used in the ordinary least squares and general least squares methods used
above to estimate the truncated moments. I those cases (putting aside
truncation), L« D; or

e D;

~ op;

is set equal to 0; here Z;[;,-D is set equal to
__“1 S(B, Dy, 1, XY
T up R(,u, ) i
If there is little truncation,

o, 8D, 2
= it R(p, X

will be close to 0, and the untruncated and truncated parameters will be
nearly identical.

APPENDIX C
Derivation of the Precinct Quantities of Interest

Using matrix notation, write
,BD B 1 0 /j’D
rl D a-Dy| pR|

Define
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Then putting aside the issue of truncation, the joint distribution of AP and
P would be

(P, P} ~ funl °, Py Aut, A"ZA).

Applying the truncation to this distribution is not straightforward, but for-
tunately it is unnecessary. Because we are only interested in the condition-
al distribution f{AP|P), we need only consider the truncation of P and not
the truncation of P. Because the conditional distributions of bivariate nor-
mal variables are univariate normal, the untruncated distribution of f°
given P will be

BP|P~ f,,[/fD;m) + 22 (P 0p - 5’1}
[ ap

where gp = upD + pr(l - D), op = Wiaay, 0pp = Viaiy, and V = A’ZA.
Rewriting, the untruncated distribution of P given P as f;‘([))D;/lD|p,UD|])),
applying the bounds on f°, and using a well-known formula for the expec-
tation of doubly truncated univariate normal distributions, the expectation

of P given P is
D
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where F,(+) is the standard normal cumulative distribution function and P
and P are the lower and upper bounds on f°. One can then make the esti-
mate of % by applying equation (4).

Equation (8) reveals the effect of estimating each precinct at its expec-
tation. If upp lies within the logical bounds, it will be the mode. From
equation (8), we sec that unless the bounds are symmetric about upp fi.c.,
Sillower bound fP) = £, (upper bound )], the mode and mean will differ.
If the truncation is greater on the high side (f° large), the mean will be less
than the mode, whereas if the truncation is greater on the low side, the
mean will be greater than the mode. Because the estimate of f® is decreas-
ing in the estimate of [, the degree of polarization [abs(f° — )] will
always be smaller if the expectation (mean) and not the mode is used as the
predicted value. This moderating effect may be in part responsible for EI's
robustness to violations to its assumptions in empirical applications
because such violations often lead to overestimates of polarization. One
can make estimates of the Bs by applying equations (1) and (2) to the point
estimates of the fis.

NOTES

1. In most applications, we cannot pare down the data to a 2 x 2 table
without making some (possibly strong) assumptions. Take the example of
making ccological infercnces about race and vote choice. To fit these data
into a 2 x 2 table, we must assume that the proportion of whites and non-
whites among those voting for third-party candidates or abstaining is the
same as the proportion of whites and nonwhites in the total population.

2. Note that “Democrat” refers to individuals who vote for the Demo-
cratic assembly candidate.

3. A nice treatment of this problem is given in Ansolabehere and
Rivers (n.d.). A more gencral though more technical treatment is given in
Cho (1998).

4. As mentioned in more detail later, by assuming a parametric distri-
bution for the fs, King (1997) is able to allow some dependence between
the fs and D; however, this cxtension of his basic modcl depends much
more heavily on the validity of this distributional agsury:ion.

5. Of course, other assumptions could also buy us a lot, such as Freed-
man ¢t al’s (1991) contextual effects model in which it is assumed that
Py =[P = SR This model completely determines the joint distribution of
ffs using only the marginal distribution of P!

6. Beran and Tl (1992) give a similar result for a somewhat more gen-
eral problem. Given that Rivers has shown that the joint distribution of the
B s uniquely determined by the joint distribution of P and D under the
assumiprion of independence, one might wonder why anyone would pursue
Kig’s pararaciric model. The short answer is elficicncy. Because we gener-
ally have relatively fow observitions on P and L2, making accurite nonpara-
of the joint distribution of the fis is not usually possible,

7. 1t should be roted that King does offer an extension of his model that
reliaes this wesumpio esion 1s given belew,

o consideraton of this e

8. King reinforces this inference by claiming that his basic model “is
robust even to high levels of aggregation bias” (p. 37). This claim is at the
center of some recent controversy (see Freedman, Klein, and Ostland 1998
and subsequent correspondence).

9. The extensions of King’s method that attempt to relax the indepen-
dence assumption are beyond the scope of this study and are not consid-
ered in the applications given below.

10. Strictly speaking, King’s estimator is fully Bayesian and not maxi-
mumn likelihood.

11. Consistent estimates of B” and B* can be had from the ecological
regression data without the assumption of independence of N and the fs if
the regressjon weights the precincts by their size (number of voters), as
shown by Ansolabehere and Rivers (n.d.).

12. Goodman (1959) considers such an estimator.

13. Although infeasible estimates of EP and E® may well indicate the
presence of aggregation bias, the contrapositive is not true. Admissible
estimates of EP and E® cannot be taken as evidence that there is no aggre-
gation bias.

14. Of course, in real applications, it is exactly these quantities that we
are trying to infer.

15. The parameters of the untruncated bivariate normal distribution are
the means, variances (standard deviations), and covariance.

16. This is likely the result of Bayesian priors that King’s (1997) eco-
logical procedure places on the parameters.

17. Technically, King’s (1997) method provides Bayesian rather than
maximum-likelihood estimators for the TBVN parameters. King places
prior distributions over each of the paramcters. However, as generally
implemented, these priors are weak (have very little effcct on the esti-
mates) and thus, without too much injustice, I present his method in terms
of the more familiar one of maximum liketihood.

18. To simplify notation, 1 have suppressed the subscripts on /i° and fi*.
This omission is innocuouw.. in this case because the (fP, f*) pairs are
assumed to be independently and identically distributed across precincts.

19. Because the precinct estimates are not consistent, we would not
expect them to [all exactly on the 45° line, even as the size of sample grows
large.

20. There are only 306, rather than 325, data scts because there are 19
pairs for which King’s (1997) estimator failed to produce estimates. The
likelihood function for King’s method is difficult to maximize. For this rea-
son, the computer procedure that implements his technique occasionally
fails to produce estimates particularly for ill-conditioned data sets.

21. Although access to incredibly powerful computers has largely obvi-
ated the need for computationally efficient approximations, there are still
some cases in which one might desire an estimator such as fastil. For
example, Lewis (1997) presents the results of over two thousand separate
ecological inference problems. In this case, fastEl outpaces King’s estima-
tor by a matter of days.

22. In * sbstantive «pplications, fastEl is a tool one might use for a quick
and easy preview of what King’s (1997) EL is likely to produce. However,
because fastil is inconsistent, users should employ King's estimator to
produce final results.

23. By the so-called accountiry identity—given in equation (4)—the
error in the Republican support estimate will be D/(1 ~ D) times as large
as the error in the estimated Democratic support, where D is the share of
voters who are Democrats districtwide. This factor holds exactly for the
El-type estimators and approximately for Goodman’s ecological regres-
sion.

24. The cap on the maximum absotute error will be a functiom of how
much infe:mation is contained in the bounds (see King 1997). ror some
sets of marginal distributions of P and D, the cap will be very close to the
trie values. For others, the cap could be very large.

25. This is well known in the literature (ef. King 1997; Achen and Shiv-
ely 1995).

26. The maximum-entropy estimator of Johnston and Hay (1982) does
allow for estimates of the individual precinet fis.

REFERENCES

Achen, C. H., and W. P. Shively. 1995, Cross-leve! inference. Chicago:
University of Chicago Press.

Ames, B. 1994, The reverse coattails effect: Local party oror
1659 Brazilian presidential ¢
88195111,

clion. American Folitica! Seiene




CHISTORICAL MISTHEODS

Ansuliubehere, 5., ant D Rivers, Nodl Hias o ecological regression. Stan-
ford University working paper.

Beran, R, and P, Hall. 1992, Estimating coefficient distributions in random
cocflicient regressions. Arnals of Staistics 20(4):1970-84.

Cho, W.-T. 1998, i1 the assumpiions {it Political Analvsis 7: 14363,

Duncan, O.-D., and B. Davis. 1959, An wliersative o ceolugical conela-
tion. American Journal of Sociology 18:665-66.

Fréchet, M. 1951, Sur les tableavx de correlation dont les marges sont don-
nees. Annals of the University of Lyon 14:53~77. Section A, Series 3.
Freedman, D. A., S. P. ilcin, and D. Ostland. 1992, Review of A solution
to the problem of ccological inference. Journal of the American Statis-

tical Association 93:1518-22.

Freedman, D. A, S. P Klein, J. Sacks, C. A. Smyth, and C. G. BEverett.
1991, Ecological regression and voting rights. Evaluation Review
15(6):672-711.

Goodman, I.. 1959. Some alternatives to ecological correlation. American
Journal of Sociology 64:610-25.

Griffiths, W. E. 1972, Estimation of actual response coefficients in the Hil-
dreth-Houck random coefficient model. Journal of the American Statis-
tical Association 67:633-35.

Hildreth, C., and J. P> Houck. 1968. Some estimators for a linear model
with random coefficients. American Staiistical Association Jowrnal
63:584-95.

Johnston, R. J., and A. M. Hay. 1982. On the paramcters of unificd swing
in single-member constituency electoral systems. Environment and

Planning 14(1):61-74.

Tudge, G. G, WO E Grilfiths, R C il HL Lutkepohl, and T-C. Lee.
1985, The theory and praciice of econometrics. New York: Wiley.

King, G. 1997, A solution 1o the ecological inference problem: Recon-
stricting individual behiavior from aggregate data. Princeton: Princelon
University I'iess.

——— 1999, The futare of ccological inference rescarch. Jowrnal of the
Asterican Statistic” Association 94:352-55.

King, G., B. Pulmquist, G. Adams, M. Altiaan, K. Benoit, C. Gay, 1.-B.
Lewis, R. Mayer, and E. Reinhard. 1997, The record of American
democracy, 1984-1990. Cambridge. Mass.: Harvard University [pro-
ducer]; Ann Avrbor, Mich.: 1CPSR [distributor].

Lewis, J. B. 1998. Who do representatives represent? The importance of
electoral coalition preferences in California. Ph.D. diss., MIT.

Rivers, D. 1998a. Nonparametric estimation of ecological regression mod-
els. Paper presented at the American Political Science Association Meet-
ings, Boston.

. 1998b. Review of A solution to the problem of ecological infer-
ence. American Political Science Review 92(2):442-43,

Robinson, W. S. 1950. Ecological corrclation and the behavior of individ-
uils. American Sociological Review 15:351-57.

Schwallie, D. P. 1982, Unconstrained maximum likelihood estimation of
contemporancous covariances. Economic Letters 9.359-64.

Shah, S. M., and N. T. Parikh. 1964. Monenis of the doubly truncated
standard bivariate normal distribution. Vidya (Joswnal of Gujarat Uni-
versity) 7:81-91.

ORDER FORM

(1 $58.00 Individuals
ACCOUNT #

ON POLITICAL SCIENCE

DYES' I would like to order a one-year subscription to Perspectives on Political
Science, published quarterly. I understand payment can be made to Heldref Publica-
tions or charged to my VISA/MasterCard (circle one).

(] $117.00 Institutions

Each issue of Perspectives
on Political Science contains
reviews of new books in the
ever-changing fields of gov-
ernment, politics, internation-
al affairs, public policy, and
political thought. These books
are reviewed by outstanding

SIGNATURE

EXPIRATION DATE specialists one to twelve

months after publication. Also

NAME/INSTITUTION

included are major articles
covering ideas and theorics

ADDRESS

concerning politics. Occa-

CITY/STATE/ZIP

sional symposium issues
address the state of the art in

COUNTRY

politics and public policy. The

SEND ORDER FORM AND PAYMENT TO:

PHONE (202) 296-6267 FAX (202) 293-6130
SUBSCRIPTION ORDERS 1(800) 365-5753
www.helderf.org

ADD $13.00 FOR POSTAGE OUTSIDE THE U.S. ALLOW 6 WEEKS FOR DELIVERY OF FIRST ISSUE.

HELDREF PUBLICATIONS, Perspectives on Political Science
1319 EIGHTEENTH ST., NW, WASHINGTON, DC 20036-1802

articles are written for readers
interested in politics general-
ly, as well as specialists in
particular fields.




