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Part 1

Midterm exam PS 30 November 2012

This is a closed book exam. The only thing you can take into this exam is yourself and writing
instruments. No calculators, computers, cell phones, etc. are allowed. Everything you write
should be your own work. Cases of academic dishonesty will be referred to the Dean of Students
office, which has the power to suspend and expel students. Partial credit will be given: math
mistakes will not jeopardize your grade. Please show all steps of your work and explain what
you are doing at each step. Correct answers alone are worth nothing without a clear and correct
explanation of where the answers come from. Clarity and legibility are factors in the grade.

This exam has four parts. Each part is weighted equally (12 points each). Each part is stapled
separately (for ease in grading, since the parts are graded separately). Please make sure that your
name and student |ID number is on each part.

If you have a question, raise your hand and hold up the number of fingers which corresponds to
the part you have questions about (if you have a question on Part 2, hold up two fingers). If
you need to leave the room during the exam (to use the restroom for example), you need to sign
your name on the restroom log before leaving. You can only leave the room once.

When the end of the exam is announced, please stop working immediately. The exams of people
who continue working after the end of the exam is announced will have their scores penalized by
30 percent. Please turn in your exam to your TA. When you hand in your exam, please write
your name down on the log. Please write all answers on this exam—if you write on the reverse
side of pages, please indicate this clearly. Good luck!
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Part 1. Ann, Betty and Cindy are sisters who win a free ticket to Paris. Unfortunately, this
ticket is just for two persons. Each person names the sister whom they want to go with. For
example, Ann can name either Betty or name Cindy. Betty can name either Ann or Cindy.

If two names match, those matched persons go to Paris together. For example, if Ann names
Cindy and Cindy names Ann, then Ann and Cindy go to Paris together (Betty stays home).
A person who does not match stays at home. If nobody matches, the sisters give the ticket
to their parents and the three sisters stay at home.

Say that a sister doesn’t care about which sister she goes with. Each sister simply prefers
going to Paris over staying at home. So a sister gets payoff 1 if she goes to Paris, and a sister
gets payoff 0 if she stays at home.

a. Model this as a strategic form game. For each sister, use the payoffs 0 or 1. (3 points)

b. Find all pure strategy Nash equilibria of this game. (3 points)



c. Now, assume that Ann does not want go to Paris with Betty. Ann thinks Betty will only
go shopping in Paris instead of visiting museums and experiencing its diverse culture. So
Ann would rather stay at home than go to Paris with Betty. But Ann still prefers going to
Paris with Cindy rather than staying at home.

Also, Betty does not want to go to Paris with Cindy. Betty thinks Cindy is too picky and
always complains about something. So Betty would rather stay at home than go to Paris
with Cindy. Betty still prefers going to Paris with Ann rather than staying at home.

Cindy really cares about her parents. For Cindy, the best thing is if her parents get the
ticket. Cindy also prefers staying at home over going to Paris because she enjoys spending
time at home with her parents. If she goes to Paris, Cindy is indifferent between Ann and
Betty as her partner.

Model this as a strategic form game. For each sister use the payoffs 1 (best), 0 (second-best),
or —1 (worst). (2 points)

d. Make a prediction in this game using the iterated elimination of weakly dominated strate-
gies. (2 points)

e. Find all pure strategy Nash equilibria of this game. (2 points).
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Part 2. Consider the following extensive form game.

a. Represent this as a strategic form game. (3 points)

b. Find all pure strategy Nash equilibria of this game. (2 points)



c. Find all subgame perfect Nash equilibria of the game. We write the game again for
convenience. (2 points)




Now change the game slightly so that the payoff 7 is now the payoff 7 — ¢. The new game is
below.

7T—c¢3 4,1
d. Fill in the table below. (2 points)
If then the subgame perfect Nash equilibrium is/are:
c=0
c=2




Here is the game again.

e. For most values of ¢, there is only one subgame perfect Nash equilibrium. For example, if
¢ = 0, there is only one subgame perfect Nash equilibrium.

However, for some “special” value(s) of ¢, there exists more than one subgame perfect Nash
equilibrium. Find all such “special” value(s) of ¢. For each “special” value of ¢, find all
subgame perfect Nash equilibria. (3 points)
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Part 3. Consider the following game.

left right
up 4,2 3,5
down 3,4 5,3

a. Find all (pure strategy or mixed strategy) Nash equilibria of this game. (2 points)

b. Now change the game by doubling all payoff numbers. Write down this new game and
find all (pure strategy or mixed strategy) Nash equilibria. Do the Nash equilibria change
when all payoff numbers are doubled? If so, show how they change. If not, explain why they
do not. (2 points)



c. Now go back to the original game and say that all payoffs are multiplied by k, where k is
a positive number (k > 0). Thus we have the following game. (For example, when k = 2,
all payoff numbers are doubled.)

left right
up  4k,2k 3k, 5k
down 3k,4k 5k,3k

Do the (pure strategy or mixed strategy) Nash equilibria you found in part a. change when
k changes? If so, show how they change. If not, explain why they do not. (4 points)



d. Now say that we have the original game and we multiply k to person 1’s payoffs when
she plays “up” and we multiply k& to person 2’s payoffs when he plays “left.” Again, k is a
positive number (k > 0). Thus we have the following game.

left  right
up  4k,2k  3k,5
down 3,4k 5,3

Note that if &k is very large (for example, if £ = 10) then “up” strongly dominates “down”
and “left” strongly dominates “right.”

What is the largest k£ such that there exists a mixed strategy Nash equilibrium of this game
(in other words, a Nash equilibrium in which at least one person mixes)? (4 points)
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Part 4. Two people play the game of Battleship on a board with five squares, as shown below.

Player 1 fires a missile into one of the five squares. She has five possible strategies. The
following are two examples.

Player 2 places a battleship on the board. The battleship occupies two adjacent squares and
can be oriented vertically or horizontally. He has five possible strategies. The following are
two examples.

If player 1’s missile lands where player 2’s battleship is, then player 1 wins: player 1 gets
payoff 1 and player 2 gets payoff 0. If player 1’s missile misses player 2’s battleship, then
player 2 wins: player 1 gets payoff 0 and player 2 gets payoff 1.

For example, here is a situation in which player 1 wins.

Here is a situation in which player 2 wins.

(turn to next page)



a. Represent this game as a strategic form game. (4 points)

b. Use the method of iterative elimination of strongly or weakly dominated strategies. You
should be able to reduce it down to a 2 x 2 game (a game in which player 1 has two strategies
and player 2 has two strategies) by trying out different orders of elimination. Please write
down the order of elimination. (4 points)



c. Write down the remaining 2 x 2 game and find all (pure strategy and mixed strategy)
Nash equilibria of this 2 x 2 game. (4 points)



