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Part 1.  Say that there are three men, A, B, and C, and three women X, Y, and Z.  They 
each have preferences over the others, as follows. 
 

 A B C 
best X Y Y 

 Y Z Z 
worst Z X X 

 
a.  Find the stable match that the men most prefer.  (2 points) 
 
 
 
 
 
 
 
 
 
b.  Find the stable match that the women most prefer.  (2 points) 
 
 
 
 
 
 
 
 
 
 
c.  Find all stable matches.  (2 points)   
  

 X Y Z 
best A C A 

 B A C 
worst C B B 



d.  Say that all we know about people’s preferences is below. 
 
 

 A B C 
best    

    
worst X Z Y 

 
In other words, all we know is that A likes X least, B likes Z least, and C likes Y least. 
Say that we are told that (AX, BZ, CY) is a stable match.  What can we conclude about 
the womens’ preferences?  Why?  (3 points) 
 
 
 
 
 
 
 
 
 
 

 X Y Z 
best    

    
worst    



e.  Now say that all we know about people’s preferences are below. 
 

 
 
 
 
 
 

 
In other words, all we know is that C likes Y best and Y likes C best.  How many 
possible stable matchings are there at the most?  Why?  (3 points) 
 
 
  

 A B C 
best   Y 

    
worst    

 X Y Z 
best  C  

    
worst    



Part 2.  The Supreme Court will soon consider the constitutionality of the Affordable 
Care Act (ACA), the health care law introduced by President Obama.  Three of the 
Supreme Court justices are under pressure to recuse themselves (not participate) in this 
case: Justices Scalia, Thomas, and Kagan.  Critics argue that these Justices cannot rule 
impartially because Justices Scalia and Thomas recently attended a dinner sponsored in 
part by pharmaceutical companies and Justice Kagan served as counsel to the Obama 
administration in the drafting of the ACA.  Justices Scalia and Thomas prefer the ACA to 
be ruled unconstitutional, while Justice Kagan prefers it to be ruled constitutional. 
 
a.  Assume that Kagan is forced to recuse herself because of public pressure from talk 
radio host Laura Graham.  Thus we have a two person game with players Scalia and 
Thomas.  Each can either recuse himself or not.  Because Kagan is out, the two justices 
feel confident that the ruling will go their way as long as one of them remains.  The best 
thing for either justice is if he recuses himself and the other justice doesn’t, because then 
his integrity will be preserved without changing the Court’s ruling.  The second best 
thing is for neither justice to recuse himself.  The worst thing, however, is if they both 
recuse themselves, because then the ACA might be found constitutional. 
 
Write this as a strategic form game in the matrix below.  For each person’s payoffs, use 
the numbers 1, 2, 3, and 4.  (2 points) 
 
 
 

 
 

 

  
 

 
 
b.  Find all pure strategy and mixed strategy Nash equilibria of this game.  (2 points) 
 
 
 
 
 
 
 
 
 
c.  Can you make a prediction using iterative elimination of (strongly or weakly) 
dominated strategies?  If so, show the order of elimination.  If not, explain why not.  (2 
points) 
  



d.  Now say that Laura Graham has been found to be on the payroll of GlaxoSmithKline, 
a pharmaceutical company, and thus her attacks on Justice Kagan no longer resonate with 
the public.  Now Kagan is a third player who can freely choose whether to recuse herself 
or not. 
 
In this three-player game, when Kagan recuses herself, the payoffs of Scalia and Thomas 
are the same as before in part a. However, when Kagan does not recuse herself, the 
payoffs of Scalia and Thomas change: if either Scalia or Thomas (or both) recuses 
himself, then the payoffs of both are 2 lower than what they were before (for example, if 
Scalia’s and Thomas’s payoffs were (4, 2) before, now they are (2, 0)).  If neither Scalia 
nor Thomas recuses himself, then their payoffs remain the same as before. 
 
Kagan’s payoffs are as follows.  For her, the best thing is if Scalia and Thomas both 
recuse themselves and she does not, because then the ACA will surely be found 
constitutional.  The second best is if Scalia and Thomas both recuse themselves and she 
also recuses herself; it is still very likely that the ACA will be found constitutional and 
her integrity is preserved.  The worst is if she recuses herself and Scalia and Thomas do 
not.  The second worst is if all three justices do not recuse themselves.  Finally, if only 
one of the two opposing justices (Scalia or Thomas) recuses himself, then Kagan is 
indifferent about whether she recuses herself or not (she gets the same payoff either way).   
 
Write this as a strategic form game in the matrix below.  For Kagan’s payoffs, use the 
numbers 5, 6, 7, 8, 9.  (2 points) 
 
 
 

 
        

 
 

   

 
 

 
 

  

 
 
 
e.  Find all pure strategy Nash equilibria of this game.  (2 points) 
 
 
 
 
 
f.  Can you make a prediction using iterative elimination of (strongly or weakly) 
dominated strategies?  If so, show the order of elimination.  If not, explain why not.  (2 
points) 
  



Part 3.  There are 200 legislators in the parliament of Kandyland. Each legislator belongs 
to one of the five political parties: V, W, X, Y, and Z. Party V members make up 35%, 
Party W members make up 25%, Party X members make up 20%, Party Y members 
make up 10%, and Party Z members make up 10%. The parliament is considering four 
different bills for a free trade agreement: A, B, C, or D.  
 
Members of Party V prefer A to B to C to D (in other words, Party V members like A 
best, B second-best, C third-best, and D worst). Members of Party W prefer C to A to B 
to D. Members of Party X prefer B to C to A to D. Members of Party Y prefer B to A to 
C to D.  Members of Party Z prefer D to C to A to B. 
 
a.  Is there a Condorcet winner? If so, which bill is the Condorcet winner?  (2 points) 
 
 
 
 
 
 
 
 
 
b.  Which bill will win if the runoff procedure is used?  Please show your work.  (2 
points) 
 
 
 
 
 
 
 
 
 
c.  Which bill will win if the Borda count is used?  Explain why by showing how many 
votes each bill receives under the Borda Count.  (2 points) 
 
 
 
 
 
 
 
 
 
d.  Which bill will win if approval voting (for top two) is used?  Explain why by show- 
ing how many votes each bill receives under approval voting.  (2 points) 
 
 
  



e.  Say that the status quo voting method is the runoff procedure as in part b above.  
 
Now say that the parliament tests a new voting system called “instant runoff.”  Each 
legislator votes for her first choice.  If a bill gets a majority, that bill wins.  If not, then the 
bill with the fewest votes is eliminated.  A new round of voting takes place, with each 
legislator voting for his first choice among the bills that have not been eliminated (for 
instance, if bill C is removed after the first round, Party W members will vote for bill A 
in the second round).  At each round of voting, the bill with the lowest number of votes is 
eliminated and is never considered again. 
 
This process continues until one bill gets a majority of the votes.  This bill wins. 
 
Which bill wins if instant runoff is adopted?  Explain why by showing the results of each 
voting round.  (3 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f.  Remember that the status quo voting system is the traditional runoff procedure as in 
part b. above.  Which party would be happiest with the new instant runoff system?  Will a 
new bill on whether to adopt the instant runoff system (as opposed to the status quo) pass 
the parliament by majority rule?  (1 point) 
  



Part 4.  Consider the following extensive form game. 

 
a. Find all subgame perfect Nash equilibria of this game.  If you want to do this by 

writing arrows, some game trees are below for convenience.  (4 points) 
 
 
 
 
 
 
 
 
 

 

                

             
 

   
  



Here is the game again for your reference.

 
b.  Write this game as a strategic form game.  (4 points)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c.  Find all (pure strategy) Nash equilibria.  (4 points)



Part 5.  Say that there are ten girls and ten boys who are thinking about going to the 8th 
grade dance.  Each girl only cares about how many other girls are going, and each boy 
only cares about how many other boys are going (this is still 8th grade).  The girls have 
thresholds 0, 1, 2, 4, 4, 5, 8, 8, 9, 9, as shown in the table below.  For example, the girl 
with threshold 5 will go to the dance as long as at least 5 other girls go.  The girl with 
threshold 0 doesn’t mind going alone. 
 
a.  Say that initially (at time t=0), none of the girls go.  Which girls will go at time t=10? 
(2 points) 
 
 
 
 

Girls’ 
thresholds 

              

0               
1               
2               
4               
4               
5               
8               
8               
9               
9               

 
 
b.  Find all Nash equilibria.  Please write your answer as something like 
(n,y,y,y,n,n,n,n,n,n).  For example, (n,y,y,y,n,n,n,n,n,n) means that the girl with threshold 
1 goes, the girl with threshold 2 goes, and one of the girls with threshold 4 goes.  If it is 
more convenient, you can write your answer in the table above and indicate clearly which 
are the Nash equilibria.  (2 points) 
 



c.  The boys have thresholds 2, 2, 2, 4, 4, 5, 6, 7, 9, 10, as shown in the table below.  For 
example, the boy with threshold 9 will go to the dance as long as at least 9 other boys go.  
Remember that boys only care about other boys. 
 
Say that initially (at time t=0), all of the boys go.  Which boys will go at time t=10?  (2 
points) 
 
 
 
 

Boys’ 
thresholds 

              

2               
2               
2               
4               
4               
5               
6               
7               
9               
10               

 
 
d.  Find all Nash equilibria.  Please write your answer as something like 
(n,n,n,y,y,n,n,n,n,n).  For example, (n,n,n,y,y,n,n,n,n,n) means that the boys with 
threshold 4 go.  If it is more convenient, you can write your answer in the table above and 
indicate clearly which are the Nash equilibria.  (2 points) 
  



e.  Now make one small change.  Now the girl with threshold zero starts to care about 
boys.  She is the only girl who cares about boys, and still none of the boys cares about 
girls.  Everyone except this girl is exactly the same as before.  This girl now wants to 
attend the dance only if at least eight boys show up. 
 
 

Girls’ 
thresholds 

              

0*               
1               
2               
4               
4               
5               
8               
8               
9               
9               

* the threshold 0 girl goes only if at least 8 boys show up 
 

Boys’   
thresholds 

              

2               
2               
2               
4               
4               
5               
6               
7               
9               
10               

 
Find all Nash equilibria.  Now that the girls and boys are interacting with each other and 
are all in one big game.  So write your answer as something like ((n,n,n,n,n,n,n,n,y,y), 
(n,n,n,n,n,n,n,n,n,y)).  In ((n,n,n,n,n,n,n,n,y,y), (n,n,n,n,n,n,n,n,n,y)) for example, the girls 
with threshold 9 go and the boy with threshold 10 goes.  If it is more convenient, you can 
write your answer in the table above and indicate clearly which are the Nash equilibria.  
(4 points)



Part 6.  There are five city councilpeople (1, 2, 3, 4, and 5), who make decisions by 
majority rule. They have four alternatives to choose from (A, B, C, and D). Their 
preferences are the following: 
 
 1 2 3 4 5 

Best A D B C B 
 D C A B A 
 C A C D C 
Worst B B D A D 
 
Say the councilpeople vote sequentially. For example, first they vote on A or NOT A, if 
NOT A wins then they vote on B or NOT B, and so on.  
 
a.  Write an agenda in which alternative A wins.  If no such agenda exists, explain why.  
(1 point) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b.  Write an agenda in which alternative B wins.  If no such agenda exists, explain why.  
(1 point) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Here are the councilpersons’ preferences again for your reference. 
 1 2 3 4 5 

Best A D B C B 
 D C A B A 
 C A C D C 
Worst B B D A D 
 
c.  Write an agenda in which alternative C wins.  If no such agenda exists, explain why.  
(1 point) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d.  Write an agenda in which alternative D wins.  If no such agenda exists, explain why.  
(1 point) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e. What is the top cycle?  (2 points) 
 
 
 
  



 
 
f. Now say an interest group wants the city council to pass a different proposal, E, which 
was not originally taken into consideration.  The interest group has to spend time and 
money to lobby the councilpeople and convince them to consider E. In particular, you 
need to spend $1 on each councilperson to get that person to consider E as her worst 
alternative; if you spend $2 on that person, E will end up ranking second-worst; and so on 
until you spend $5, which will make E the best choice for that councilperson.  
 
If you spend…on a 
given councilperson 

E will rank…in that 
councilperson’s 
preferences 

$ 1 5th  
$ 2 4th  
$ 3 3rd 
$ 4 2nd 
$ 5 1st  

 
The interest group cannot change the order of the existing alternatives; it can only 
“insert” the new alternative E while preserving the original ranking.  For example, if the 
interest group spends $3 on councilperson 1, his preferences change from A, D, C, B (A 
is best, B is worst) to A, D, E, C, B.   
 
The interest group obviously must spend at least $1 per councilperson = $5. The interest 
group wants to make sure that E wins, regardless of which agenda is adopted, but at the 
same time it wants to spend as little money as possible.  For example, it could make E 
everyone’s first choice by spending $25, but that would be a waste of money. 
 
How much money will the interest group spend on each councilperson so that E wins 
regardless of the voting agenda? 
 
Insert E into the original ranking of alternatives so that E wins in any voting agenda and 
the interest group spends as little money as possible. How much money do they need to 
spend?  
 
Please show your work on the next page.  (6 points) 
  



Here are the councilpersons’ preferences again for your reference. 
 1 2 3 4 5 
      
Best A D B C B 
      
 D C A B A 
      
 C A C D C 
      
Worst B B D A D 
      
 



Part 7.  Amy and Barbara are playing a card game.  Each player has four cards: one, two, 
three, and a Joker.  Each player chooses a card simultaneously.  Amy wins the game if 
they either both play Jokers or if they both play numbers (one, two, or three) and the 
numbers are different.  In all other circumstances, Barbara wins the game.  For example, 
if Amy plays 1 and Barbara plays Joker, then Barbara wins.  If Amy plays 2 and Barbara 
plays 2, then Barbara wins.  If Amy plays Joker and Barbara plays 1, then Barbara wins. 
The winner receives $1 and the loser gets $0.   
 
a.  Model this as a strategic form game in the matrix below.  Find all pure strategy Nash 
equilibria. (3 points) 
 
  
 1 2 3 J 

1     

2     

3     

J     

 
 
 
b.  Now we will find mixed strategy Nash equilibria of this game.  For simplicity, assume 
that Amy plays each number 1, 2, or 3 with the same probability p and that Barbara plays 
each number 1, 2, or 3 with the same probability q, as shown below.  Find the mixed 
strategy Nash equilibria of this game.  (3 points) 
 
 [q] 

1 
[q] 
2 

[q] 
3 

[1 – 3q] 
J 

 [p]     1     

[p]     2     

[p]     3     

[1 – 3p]  J     

 
  



c.  Now say the game changes.  Now Amy and Barbara each have five cards: one, two, 
three, four, and a Joker.  Just like before, Amy wins if either she and Barbara play 
different numbers or if they both play Jokers.  In all other circumstances, Barbara wins 
the game.  In other words, the game is just like before except that now both Amy and 
Barbara have four numbered cards instead of three.  Does this game have any pure 
strategy Nash equilibria?  Find mixed strategy equilibria of this game using the approach 
you used in part b (in other words, assume that each numbered card is played with the 
same probability).  You can write out the entire 5 x 5 game but it should not be necessary.  
(3 points) 
  



d.  Now say the game changes again.  Now Amy and Barbara each have six cards: one, 
two, three, four, a Red Joker, and a Black Joker.  Now Amy wins if either she and 
Barbara play different numbers or if they both play the same color Joker (both play Red 
Jokers or both play Black Jokers).  In all other circumstances, Barbara wins the game.  
For example, if Amy plays a Black Joker and Barbara plays a Red Joker, then Barbara 
wins.  If Amy plays a number and Barbara plays either Joker, then Barbara wins.  If Amy 
plays either Joker and Barbara plays a number, then Barbara wins.   
 
Does this game have any pure strategy Nash equilibria?  Find mixed strategy equilibria of 
this game using the approach you used above.  You can write out the entire 6 x 6 game 
but it should not be necessary.  (3 points) 
  



Part 8.  Suppose two candidates run for president in a country which uses an electoral 
college. This country has a population of 300 people and is comprised of three states, 
Alazona, Delafornia, and Virwaii.   
 
Alazona has 8 electoral votes and its voters are distributed as follows: 

HL ML C MR HR 
10 10 30 30 20 

 
Delafornia has 4 electoral votes and its voters are distributed as follows: 

HL ML C MR HR 
4 18 30 38 10 

 
Virwaii has x electoral votes and its voters are distributed as follows: 

HL ML C MR HR 
10 60 6 14 10 

 
Each candidate chooses a single position nationwide—a candidate can’t be conservative 
in one state and liberal in another.  Each voter votes for the candidate who is closest to 
her own position.  If two candidates are equally far away, then the voters split 50-50; in 
other words, if candidate 1 is at HL and candidate 2 is at C, half of the ML voters vote for 
each candidate.  If a candidate wins a majority of votes in a state, she gets all of that 
state’s electoral votes.  If the two candidates tie and each get 50 percent of the votes in a 
state, then that state’s electoral votes are split equally.  Each candidate’s payoff is the 
total number of electoral votes she receives. 
 
a.  Model this as a strategic form game.  (4 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



b.  How does the set of pure strategy Nash equilibria depend on x?  (Your answer should 
be a set of statements like “If x is less than 7, then the NE are (HL, HL) and (C, C); if x is 
equal to 7, then the NE is (HR, HR); if x is greater than 7 and less than 10, then the NE 
are (ML, ML) and (HL, HL)” and so forth.)  (4 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c.  Now say that the country gets rid of its electoral college system and chooses its 
president by nationwide majority vote.  In other words, states don’t matter anymore—all 
that matters is a candidate’s nationwide total of votes.  Find the (pure strategy) Nash 
equilibria of this new game.  You can write out the new 5 x 5 game but it should not be 
necessary.  (4 points) 
 


