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Abstract

Abstract: A man wants to sell his land, but his two wives hold
claims to acquire it in case of a divorce or his death. The first wife
writes the buyer giving up her claim and the sale goes through. After
the husband dies, the second wife points out that she did not relin-
quish her claim and she seizes the land from the buyer. Then the first
wife takes the land from the second wife, arguing that she has priority
over the second and gave up her right only with respect to the buyer.
The buyer then seizes the land from the first wife, and so on. The Tal-
mud states that they compromise but does not give their shares. The
situation can be construed as a bargaining game with non-transferable
utility, assuming that side payments can be seized just like the land, or
as a sequential-offer bargaining game. For a reasonable characteristic
function the NTU-value of Harsanyi seems most intuitive.
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1. The problem

The Talmud, the compendium of Jewish laws written down during the
first few centuries of the common era, includes various rules for dividing a
commodity among claimants. Some of these and others in the later Talmudic
literature have been studied using game-theoretical methods (e.g., Aumann
and Maschler 1985, on three wives holding marriage contracts; O’Neill 1982,
on four sons sharing an inheritance.) The research has contributed to a body
of work on fair division in the face of conflicting claims (Thomson 2003)
and some of its results have been presented in the community of Talmudic
scholars (Aumann 1999).

Each rule in the Talmud is structured as a mishnah, or teaching, sur-
rounded by the gemara, a debate and explanation by the rabbis. The book
on marriage contracts (ketubot) includes the following mishnah. (The bold
type gives the wording of the original Aramaic and the rest is the editors’
elaboration.)

If a man had two wives, and the ketubah deed of one was dated
earlier than that of the other, and the husband sold his field
over which both [of] them exercised a lien, but which was not suf-
ficient for both ketubah settlements, and the man’s first wife,
who had the preferential lien, wrote to the buyer of the prop-
erty, ”I will have no claim against you regarding this field,”
thereby renouncing her right to seize that field from him as pay-
ment of her ketubah settlement, and the husband later died, the
man’s second wife can take the field away from the buyer,
for she never waived her right to collect her ketubah settlement
from that property. And then the man’s first wife can remove
the field from the second wife for she has the preferential right
of recovery and did not waive her right to collect from the second
wife. And then the buyer can remove the field from the first
wife, for she had waived her right to dispute with him over that
field, and the cycle repeats itself over and over again the
second wife seizes from the buyer, the first wife from the second
wife, and the buyer seizes from the first wife until the three
parties make a compromise among themselves and come to
an agreement about how to divide the field . . . . (Babylonian
Talmud, Steinsaltz edition, Ketubot, 95a.)
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In other division problems the problem is that the parties are claiming
different amounts that sum to more than is available, but here each party
has a claim on the whole property and directs it only at certain other par-
ties. The claim becomes active only when that person holds the property.
Also, the final division is achieved by the parties bargaining rather than an
outsider choosing a division. In another famous passage (Baba Mezi’a 2a),
two disputants argue over a garment found on the street and it is the court
that settles it, but here they solve it themselves.

In other division problems the parties are claiming different amounts
which sum to more than the total available and the question is the proper size
of their shares. In this case each party has a claim on the whole property but
one directed only at certain other parties. The claim becomes active when its
target holds the property. Also, the solution is achieved by bargaining rather
than by an outsider choosing a division. In another famous passage (Baba
Mezi’a 2a), two disputants argue over a garment found on the street and it
is the court that settles it, but here they are told to solve it themselves.

The dilemma arises here because the buyer got a release from only one
wife. Why did he not insist on letters from the second? The Talmud’s
situations are sometimes far-fetched. For example, the passage analyzed by
Aumann and Maschler (Ketubah 93a) had the man marry his three wives
on the same day and by messenger. The standard resolution for conflicting
marriage claims was that the first wife took everything up to her share, then
whatever was left went to the second up to her share, then to the third,
etc., but the Talmud’s setup ensured that no one knew who was first.) The
present problem could be one of these, more aimed at clarifying the logic
than giving a practical rule. The broad structure of cyclical claims had other
applications since, as the Talmud and later commentators note, cycles can
arise from mechanisms involving several creditors or in-laws (Naeh and Segal
2008.)

On the other hand, perhaps he doubted that the second wife would co-
operate and even if he had succeeded the price might have risen, so he took
a chance that she would not need the land to satisfy her marriage contract.
The gemara, the surrounding discussion, is unhelpful on choosing a specific
division. The rabbis worry about whether the first wife wrote her letter just
to please her husband and whether it has any legal effect. Perhaps they
thought the exact shares were obvious: the claims are in a circle so each
party should get one-third. However the situation is not really symmetrical
since the buyer holds the land and can enjoy it until the court’s verdict; he
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could ask for a bigger share in exchange for an immediate deal. Even if an
equal division were obvious for this problem, adding another wife would make
the claims pattern asymmetrical, as Figure 1(c) shows. Now wife 2 is in a
stronger position than wife 3 since both she has the same incoming claim as
3, but her outgoing claims are a proper superset of 3’s. Equal division seems
inappropriate, so we need a general theory.

An n-person claims structure, C = (N,E, T, h), is a set N = {1, ..., n} of
parties, a set E ∈ 2N×N of directed edges, a positive real number T inter-
preted as the total available, and a holder h ∈ N . In Figure 1 the parties are
represented as points, the holder is circled, and an edge, or arrow, means that
the tail party has a claim to take the land from the tip party. The ordered
pair representing an edge is written i → j. Conditions on E are i → i 6∈ E
(no arrow starts and ends at the same node), and not both i → j ∈ E and
j → i ∈ E (claiming cannot be mutual.) For j ∈ N the members of the set
{i ∈ N |i → j} are the claimants on j. A pattern (N,E) without a distin-
guished holder is called a graph, and, following graph theory terminology, if
either i → j ∈ E or j → i ∈ E for all distinct i, j, the graph is a tourna-
ment. A solution Ψ is function assigning to each C of a set of n-vectors, each
satisfying xi ≥ 0 and

∑
xi = 1. These are interpreted as possible vectors of

reasonable payoffs. When the set of solutions is single-valued solution” will
be used to refer to the payoff vector itself.

FIGURE 1 HERE

Figure 1 shows some claims problems for three and four persons (two or
three wives plus a buyer.) The three-person line, Figure 1(a), is simple but
not at all trivial, and will provide a test case for various solutions. Figure
1(b) is the Talmud’s three-person cycle, and Figure 1(c) adds a third wife,
who keeps her claim as the second does.

One could generalize the situation by starting with the land distributed
among several people or by allowing unequal claims. Figure 2 shows how the
latter case might encompass Aumann and Maschler’s problem, Ketubah 93a.
This analysis, however, will treat one unit of land, initially in the hands of
one person, with parties claiming the entire amount.

FIGURE 2 HERE
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Section 2 raises two obvious solutions but argues against them. Section 3
treats the problem as an NTU bargaining game by defining a characteristic
function and calculating solutions with the values of Harsanyi (1963), Shap-
ley (1969), and Maschler and Owen (1989, 1992), as well as with an NTU
version of the nucleolus. Section 4 defines a sequential bargaining game. Sec-
tion 5 compares the solutions according to whether payoffs respond positively
to certain changes in the claims problem. The conclusion uses the results to
comment on the coalitional and strategic approaches to bargaining.

2. Two unacceptable solutions

The Talmud suggested that the land might get passed around forever,
and this notion could be developed as follows. In each period we identify the
parties with claims on the current holder and we transfer the land to each
of them equiprobably and independently of previous transfers. The Markov
solution is the vector x∗ of steady-state likelihoods that each party is holding
it, or, equivalently, the long-term proportions of the time each holds it. For
graphs like those in Figure 1 where these proportions are independent of the
initial holder, the solution is determined by x∗ = x∗M, where M is the tran-
sition matrix. The transition matrices and solutions for Figure 1’s problems
are shown in Figure 3.

FIGURE 3 HERE

The Markov solution has the desirable feature that it removes players’
incentives to renegotiate. After the land has been distributed, the parties
could be seen as facing a set of new problems, one over each portion of the
land in someone’s possession, that portion being subject to the claims of
the original graph. If we solve these by the Markov method, their total will
have their original allocation. This property is not unique to the Markov
solution but holds for any solution that covaries in ratio with the amount
available and that chooses an allocation that is independent of the original
holder whenever the latter is among those who get a positive share.

The fixed point property is attractive, but the Markov solution is unac-
ceptable for strategic bargainers. In the three-person line the land would
go from Buyer 3, to Wife 2, then to Wife 1 and stay there, for a division
(1, 0, 0). In fact Wife 2 is in a strong position: she can refuse to seize the
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land from 3 unless 1 allows her some positive share. If the alternative were
the Markov solution, her carrying out this threat would be costless to 2 but
would block any gain by 1, so the latter should offer her something for her
cooperation. However the Markov solution has 2 seizing the land without
considering what will happen next. As to the rationale of the fixed point
property, one can argue against it since the output of a solution rule is an
agreement that the parties have bound themselves to stick with, and should
not be the input for further claiming.

Another proposal would be to calculate the straightforward Shapley TU-
value. In case of no agreement two opposing coalitions would form and if the
current holder were subject to a claim from someone in the opposing side,
then that player would transfer the land elsewhere in his own coalition in
exchange for a side payment. In the three-person cycle with the coalition
partition 13 versus 2, player 3 could keep the land away from 2 by giving
it to 1 in exchange for a payment, so the characteristic function would have
values v(13) = 1 and v(2) = 0. Also v(12) = 1 since Wife 2 can grab the land
from 3 and hold it as long as she pays her coalition partner 1 not to take it
from her. Similarly v(23) = 1. The characteristic function for the Talmud’s
three-person cycle assigns 0 to single players, 1 to pairs, and 1 to the grand
coalition, so by symmetry the Shapley value gives an equal division. For
the three-person line of 1(a) the division would also be equal, and for the
4-person tournament of 1(c) it would be (5, 3, 1, 3)/12.

An objection is that in a typical real legal system side payments are just
as seizable as the land. Wife 2 will make a payment only on condition that 1
not press her own claim against 2, so for all purposes 1 is selling that claim
to 2. So just as the Buyer has a right to the land, he has a right to the pro-
ceeds of a sale of a claim on it. If side payments can be seized then coalition
12’s benefits must stay with 2 and the correct model is an NTU game. (Al-
though we are convinced by this argument, those who are still curious about
the Shapley TU-value can refer to the calculations of the Shapley NTU and
Maschler-Owen values in the next section, which coincide with the Shapley
TU-values for these games.)

3. NTU bargaining models

An NTU game is a pair (N, V ) where N is a set of n ”players” and V (S)
is a set of vectors in RS for S 6= φ,⊆ N . The set V (S) is interpreted as the
payoffs for the options achievable by S should it form. In the 3-cycle, V (12)
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includes (0, 1,−), and since the standard definition allows players to dispose
of utility, 12 can get anything in the larger set {(x1, x2,−)|x1 ≤ 0, x2 ≤ 1}.
(The ”-” notation is a reminder of who is in the coalition.) For A ⊂ RS, A∗

is defined as A’s comprehensive closure, {y ∈ RS|y ≤ x for some x ∈ A}, so
that V (12) = {(x1, x2,−)|x1 ≤ 0, x2 ≤ 1}∗.

Constructing a characteristic function
The appropriate values for a characteristic function are not obvious, and

will be partly arbitrary. For the 4-tournament of Figure 1(c) it is natural to
set V (34) = (−,−, 0, 0)∗ since wife 2 can seize the land no matter whether
4 tries to keep it himself or transfers it to 3. What about V (13)? If 24
seizes the land from 13, 13 can take it back but only temporarily. Assigning
V (13) = (0,−, 0,−)∗ ignores 13’s extra power compared to 34. Still this will
be part of the definition of V ; there are reasonable alternatives but reducing
a sequential problem to a characteristic function always means discarding
some information.

The NTU characteristic function follows from a three-stage scenario. Firt
the coalition containing the current holder can transfer the land to any of its
members not subject to a claim from the rival coalition (including possibly
himself), with the receiver possibly making side payments to others in the
coalition who are not subject to an outside claim. If this is impossible because
everyone in the holder’s coalition receives an outside claim then the land
goes to the rival coalition, which can use the same tactic, i.e., transfer it
within itself accompanied by side payments, the beneficiaries being anyone
free from an outside claim. If that is impossible in the rival coalition too,
then all players get at most zero. In summary, for {S,NS}, not both empty,
specify S as the coalition containing the initial holder h, and let KS ⊆ S be
the players of S who do not receive an arrow from the opposing coalition,
i.e., KS = {i ∈ S| 6 ∃j ∈ NS, j → i ∈ E}.

The vector (0, . . . , 0) of length |S| is denoted 0S.

Stage 1. If |KS| ≥ 1 then V (S) = {x ∈ RS|
∑
xi = 1 for i ∈ KS, xi = 0

for i ∈ S −KS}∗, and V (N − S) = {0N−S}∗for N − S 6= φ.

Stage 2. If |KS| = 0 and |KN−S| > 0, then V (N − S) = {x ∈
RN−S|

∑
xi = 1 for i ∈ KN−S, xi = 0 for i ∈ N − S − KN−S}∗, and

V (S) = {0S}∗ for S 6= φ.
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Stage 3. If |KS| = |KN−S| = 0, then V (S) = {0S}∗ for S 6= φ and
V (N − S) = {0N−S}∗ for N − S 6= φ.

Note that (1) implies V (N) = {(x1, ..., xn)|
∑
xi = 1, xi ≥ 0}∗.

The three-person line problem has the following characteristic function.
(The coalition {1, 2, 3} is here abbreviated 123, and (1,−, 0)∗ refers to the
comprehensive closure of the set containing this vector. The notation (x1, x2,−)∗

refers to the comprehensive closure of the vectors satisfying
∑
xi = 1, xi ≥ 0

for i ∈ S.)

V (1) = (0,−,−) V (23) = (−, 0, 1)
V(2) = (- , 0, -) V(13) = (1, - , 0)

V(3) = (- , - , 0) V(12) = ( x1, x2,−)
V(123) = ( x1, x2, x3).

The three-person cycle has the same characteristic function except that
V (12) = (0, 1,−). For the four-person tournament,

V (1) = (0,−,−,−) V (234) = (−, 0, 0, 1)
V(2) = (- , 0, - , -) V(134) = (1, - , 0, 0)

V(3) = (- , - , 0, -) V(124) = ( x1, x2,−, 0)
V(4) = (- , - , - , 0) V(123) = (0, x2, x3,−)
V(12) = (0, 1, - , -) V(34) = (- , - , 0, 0)
V(13) = (0, - , 0, -) V(24) = (- , 0, - , 0)
V(14) = (1, - , - , 0) V(23) = (- , 0, 0, -)

V(1234) = ( x1, x2, x3, x4).

Noted NTU solutions include those of Harsanyi, Shapley, Maschler and
Owen, Kalai and Samet, and different extensions of the TU nucleolus. Hart
(2004) compares the first three and gives helpful tips for their calculation.
These solutions depend on an n-vector of weights assigned to the players,
interpretable as the virtual rates for utility transfer among the players. The
Harsanyi, Shapley and Maschler/Owen values restrict the weights endoge-
nously as part of calculating the allocations, but they sometimes allow mul-
tiple solution vectors. Some of these are degenerate in that they follow from
giving certain players a weight of 0, so we will add the constraint that all
players receive a strictly positive weight. It will turn out that because of
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the shape of V (N) these solutions admit only the weight vector (1, 1, . . . , 1).
This result reflects the fact that the land is freely transferable at these trade-
offs within the grand coalition. Applied to our games Maschler and Owen’s
value coincides with Shapley’s because all coalitions have feasible sets whose
boundaries are unit simplices (although some are of reduced dimension.)
Also, by chosing the unit weight vector for Kalai and Samet’s solution it
becomes coincident with Harsanyi’s [Proofs].

Concerning a nucleolus-type NTU solution, although no single extension
has become dominant (Kalai 1975; Klauke 2002), again the transferability of
land in the grand coalition suggests using the 1:1 transfer rates so that we
will simply sum the payoffs within coalitions to calculate excesses. In the end
there are only three numerically different solution concepts, which we label
ΨSHP ,ΨHAR and ΨNUC . Results for the games of Figure 1 are shown there.

For the three-person line, Harsanyi’s value gives a reasonable division:
wives 1 and 2 split the land equally. One can imagine 2 threatening to go
into a coalition with 3, thereby leaving the land in 3’s hands and cutting out
1. Wife 2 might thereby induce 1 to give her a share. In Harsanyi’s value
membership in each coalition gives each player a ”dividend,” which may be
negative but must be the same across all the members. In the three-person
line only the coalition 12 can give positive dividends since the dividend in 13
is limited by 3’s maximum payoff of 0, as is 2’s maximum in coalition 23, so
in the end only 12 matters.

The Shapley NTU solution for the three-person line confers a positive
amount on player 3 even though he apparently has no threats or moves of
any kind. A justification might be that if player 2 carried out her threat
against 1, the beneficiary would be 3. He may be a bystander, but like a
Swiss banker he can receive the land from 2 and hold it and so arguably he
should receive something. Also, it is typical of the Shapley value to give high
consideration to the grand coalition (compare Hart’s, 1985, and Aumann’s,
1985, respective axiomatizations of Harsanyi’s and Shapley’s values.)

Figure 4 shows how differently the solutions behave for other claims prob-
lems. For the 4-person line, Figure 5(a), Harsanyi gives player 4 nothing since
4 cannot add to the options of any coalition given the condition that everyone
must share the benefits equally. Shapley, on other hand, cuts out Player 2
on the grounds that 2 cannot increase the total value of any coalition. Total
value is the important criterion since the solution implicitly adds utility gains
at ratios determined by the gradient of V (N)’s boundary.
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FIGURE 4 HERE

As Figures 4(f) and 4(b) suggest, for Shapley’s solution adding more
players each with a demand on the holder helps the holder. This seems odd,
but the rationale is that holder can combine with any of the new parties to
transfer the land before the outside demands are pressed, and more possible
partners strengthens his bargaining position.

Finally, consider a tournament of three-wives-plus-a-buyer like Figure
4(c) but where both the first second wives have signed away their claims.
In the earlier case, Shapley’s shares were (5, 3, 1, 3)/12, but here they are
(3, 1, 3, 5)/12. The buyer gains and second wife loses, as one would expect
after she reversed her arrow. Also the first wife loses and the third wife gains,
a result rationalizable on the grounds that they have claims on fewer people
and more powerful people, respectively.

Conjecture: (probably easy to prove) Restricted to 1:1 transfer rates,
the solutions for these games for each method are unique.

4. A strategic game of sequential offers
A sequential-offer game runs as follows. At times t = 0, 1, 2 . . . the land

can either pass from one player to another through a seizure or it can be
divided permanently by an agreement. The claimants on the initial holder are
called the initial claimants, and if there has been no agreement we identify the
current claimants as those players with a claim on the current holder. If there
are no current claimants the land stays with the holder forever, but otherwise
one of them is selected equiprobably and this player, the current proposer,
offers a proposal, a specific division of the land among the players. After the
current proposer announces the proposal, all parties simultaneously announce
whether they accept the proposal. If all accept, that division becomes their
permanent shares, but if anyone refuses, the proposer either leaves the land
with the holder or seizes it and becomes the holder. The decision to seize may
depend on who has or has not accepted. (The motive for sometimes seizing
and sometimes not is apparent from the three-person line, where player 2’s
power derives from threatening 3 with seizing and threatening 1 with not
seizing.) From the next set of claimants, possibly the same or different, a
proposer is selected, independently of past events. Players aim to maximize
the limit of their average payoffs as t→.

By defining the set of states as the pairs {(i, j|(i → j) ∈ E} comprising
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a holder and a proposer, we have a stochastic game (Vieille, 2002). In a
stochastic game the next state depends only on the players’ joint choices at
the current stage and a chance event, possibly dependent on their current
choices. A strategy is Markov if it depends only on the current state, and a
Nash equilibrium is Markov if it involves only Markov strategies, i.e., does
not depend on the current time or the previous history.

For a problem with graph G = (N,E) a path from i to j is a sequence
(i0, i1, . . . , ik) such that i0 → i1, i1 → i2, . . . , ik−1 → ik ∈ E with k ≥ 1, i0 = i
and ik = j. We assume G has a path from the initial holder to every other
player, since otherwise some player would have no possible moves, would
receive 0 in every equilibrium and could be eliminated. The states of the
stochastic game are then equivalent to the edges E. A Markov strategy
for player i is a triple (Proposali, Seizei, Accepti). Proposali is a function
from E to the simplex of n-tuples x with xi ≥ 0 and xi = 1, interpreted
as the proposal i makes when he is the current claimant on j. Seizei is a
function from E to the subsets of 2N{i}, interpreted as the list of patterns
of refusals that trigger a seizure. Finally, Accepti is a subset of {{j, k} ×
Proposalj|{j, k} ∈ E, i 6= j}, and is interpreted as the set of proposals that
i will accept.

One Markov equilibrium is the greedy equilibrium, where each proposer
demands 1 and threatens to seize if anyone refuses, while each non-proposer
refuses any offer less than 1. For the three-person line, the greedy equilibrium
has the land move to player 2, then to 1, then stay there; in the three-person
cycle, each gets 1/3.

Theorem 1. The greedy equilibrium is a subgame perfect equilibrium
for any claims problem; its expected payoff vector is the Markov solution
(Section 2).

The agreement equilibria are those subgame perfect Markov equilibria
where the first offer is accepted. For the 3-person line, one group of agreement
equilibria has the initial proposer 2 offering (0, 0, 1) and the others accepting.
This is backed by 2’s not seizing after any refusal. Another group involves 2
offering (1, 0, 0) and 2 seizing if 3 refuses. A third set involves 2 offering (0,
1, 0), not seizing if 1 refuses but seizing if 3 refuses. All of these moves by 2
are optimal since if 2 were to seize, 1 would offer (1, 0, 0) at the next stage.

The last group of equilibria strikes us as the most persuasive. Had the
game not allowed agreements, 2 become a selfless arbitrator, allocating the
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prize between 1 and 3 (perhaps probabilistically) but gaining nothing. Since
agreements are possible, 2 can be a corrupt arbitrator, receiving payments
for his choice, and chiseling the others down to zero as happens in certain
markets and auctions. While 1 and 3 wish they could collude, an equilibrium
need only be resistant to unilateral deviations - 3 chooses her moves under
the assumption that 1 will agree to the proposal and vice versa for 1, so
neither gains by saying no. This is equivalent to an assumption that, having
maximized his payoff, 2 lexicographically adopts the goal of frustrating a
player who refused his offer. We define a agreement solution as a vector of
payoffs of a subgame perfect Markov equilibrium in the above game, which,
at the first selection of a proposer, are optimal for each proposer. Figures 1
and 4 give the agreement solution (”AGR”) for some example games.

The following theorem narrows the possible offers that arise in agreement
equilibria by giving the shares of the holder and the non-claimants, but not
of the claimants.

Theorem 2. In the agreement solution, if there are no initial claimants
the initial holder receives the total; otherwise it is divided in some way among
the initial claimants.

Thus in the three-person line and the cycle, the agreement solution as-
signs the full payoff to player 2. Figure 4 shows a problem where the initial
claimants share it unequally. If player 1 or 3 are chosen as initial proposers
they take it all, but if player 2 is chosen, he offers 1 and 3 amounts equal to
their expectations should the game go to another round of proposals.

5. Monotonicity
We discuss how the different allocations respond to changes in the prob-

lem. They are denoted ΨHAR, ΨSHP , ΨNUC and ΨAGR.
First, if we add a new arrow it is plausible that the player at the tip

should get no more than before and that the player at the tail should get no
less.

Definition. A solution rule Ψ satisfies out-claim monotonicity if, for
all claims problems C = (N, h,E) and C ′ = (N, h,E

⋃
{j → i}) and all

x ∈ Ψ(C), x′ ∈ Ψ(C ′), the following hold: xi ≥ x′i and xj ≤ x′j.
One cannot immediately conclude that any particular NTU solution sat-

isfies out-claim monotonicity since the three NTU solutions are not in general
monotonic with the characteristic function. For two players they reduce to
the Nash bargaining solution, which does not satisfy this property (Kalai
and Smorodinsky 1975). The problems considered here, however, are re-
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stricted in that the grand coalition achieves the unit simplex. By considering
cases one can show the following, where the new arrow is i→ j, the resulting
characteristic function is V ′, and S is a coalition containing neither i or j, and

V (S) = V ′(S),
V(S + {i} + {j}) = V’(S + {i} + {j}),

V(S + {i}) ⊆ V ′(S + {i}),
V(S + {j}) V’(S + {j}).

Then one can argue that, as pointed out above, ΨSHP corresponds numeri-
cally to the Shapley TU value, whose monotonicity in this sense was proved
by Young (1985), and that ΨHAR is identical to Kalai/Samet’s monotonic
solution with unit weights, whose monotonicity was established by those au-
thors (1985). A comparison of Figure 4(e) and 4(f) shows that the nucleolus
rule is not monotonic. In summary,

Theorem 3. The solution rules ΨHAR and ΨSHP are out-claim mono-
tonic; ΨNUC is not.

Definition. A solution rule Ψ satisfies in-claim monotonicity if, for
all claims problems C = (N, h,E) and C ′ = (N, h,E

⋃
{i → j} and all

x ∈ Ψ(C), x′ ∈ Ψ(C ′), the following hold: xi ≥ x′i and xj ≤ x′j.
ADD A PARAGRAPH AND THEOREM 4 ON THIS AXIOM

Another plausible criterion is that moving the land from one player to
another never helps the former and never hurts the latter.

Definition. A solution Ψ satisfies possession monotonicity if for all
claims problems C = (N, h,E) and C ′ = (N, h′, E) and all x ∈ Ψ(C), x′ ∈
Ψ(C ′), the following hold: xh ≥ xh′ and xh′ ≤ xh′ .

By considering certain cases we can establish some equality and inclusion
relations between the characteristic functions. If V ′ is the game with the
holder moved from h to h′,

V (S) = V ′(S) if h, h′ 6∈ S or h, h ∈ S,
V (S) ⊆ V ′(S) if h 6∈ S, h′ ∈ S
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V (S)V ′(S) if h ∈ S, h /∈ S

One can then apply the results of Young, Kalai/Samet to show the mono-
tonicity of ΨHAR and ΨSHP . The sequential bargaining procedure ΨSEQ vi-
olates monotonicity, however, since with three claims in a line as in Figure
1(a), moving the holder from 3 to 2 changes 2’s payoff from δ to 1 − δ, and
so harms 2 for δ > 1/2.

Theorem 5. Solution rules ΨSHP and ΨHAR satisfy possession mono-
tonicity; ΨSEQ does not.

It seems appropriate that the strategic model should not satisfy posses-
sion monotonicity. In the three-person line, 2’s only threat against 1 is based
on not possessing the land. Generally the different solutions’ monotonicity or
lack of it do not reflect the relative plausibility of the strategic versus coali-
tional game approach, since the assumptions of play differ. In the strategic
approach players attach value to holding the land even temporarily, in con-
trast to the coalitional approach. The latter let them transfer it to a coalition
partner, which was not part of the strategic approach.

6. Conclusions
The Talmud’s problem is interesting not only on its own and for its impli-

cations for the coalitional and strategic approaches to bargaining. Nash had
viewed the two approaches as ”complementary” (Serrano, 2005), but over
the years and especially in the United States coalitional models have come
to often be seen as innately flawed, worth considering only until a strategic
version arrives. This follows the so-called ”Nash program,” which Harsanyi
endorsed in 1980 in these words,

The natural remedy [for problems of NTU solutions raised by
Roth] is to define the solutions for cooperative games by means of
suitable bargaining models having the nature of non-cooperative
games in extensive (or sometimes in normal) form. Of course
in order to use this approach, one must have a mathematical
criterion that will always select one specific equilibrium point of
one’s bargaining model as the solution. Once such a theoretical
framework is available, then difficulties like those pointed out by
Roth will disappear.
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He added that his own tracing procedure gave a reasonable solution to
Roth’s example.

Harsanyi hoped for a persuasive single-valued solution but that now seems
too optimistic. Even when the Nash equilibrium shares are unique, as in the
examples here, the result can be counterintuitive. In the Talmud’s three-
person player 1 gets 0 and player 3 gets 1 − δ if both accept 2’s offer, but
refusing would guarantee these minimum amounts and possibly give them
more. This solution payoffs seem irrational but the fault cannot be laid with
the particular model of offers since the payoffs seem unreasonable even within
that model. The process gives the floor to player 2 to make a proposal and
the other two player stay silent, but even without communication they will
surely realize that they can only do as well or better by turning 2 down. The
difficulty is that the standard Nash equilibrium resists only deviations by one
player at a time, which in this case assumes that player 1 and player 3 do not
deviate together. The concept is unsuitable for n-person games where coali-
tions are advantageous. This difficulty has come up in past contexts (e.g.,
Bernheim, Peleg and Whinston, 1987:4), but the Talmudic problem provides
an especially simple example.
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