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Abstract
This paper evaluates multi-decadal simulations of the UCLA version of Climate Forecast System version 2, in which the 
default Noah land surface model has been replaced with the Simplified Simple Biosphere Model version-2. To examine the 
influence of the atmosphere–ocean (AO) interaction on the variability, two different simulations were conducted: one with 
interactive ocean component, and the other constrained by the prescribed sea surface temperature. We evaluate the mean 
seasonal climatology of precipitation and temperature, along with the model’s ability to reproduce atmospheric variability at 
different scales over the globe, including extratropical modes of atmospheric variability, and long-term trends of global and 
hemispheric temperature and regional precipitation. Here, we particularly selected two monsoon regions, East Asia and West 
Africa, where the simulation of multi-decadal variations which has heretofore been a challenging task, to examine decadal 
variation of monsoon precipitation. In general, temperature anomaly trends were better captured than those of precipitation 
in both simulations. Results suggest that the AO interaction, represented as latent heat flux, contributes to improve repro-
ducibility of global-wide climatology, extratropical modes of atmospheric variability, and variability in the multi-decadal 
climate simulation, as well as for inter-decadal variability of the East Asian summer monsoon.

Keywords Multi-decadal simulations · UCLA-CFSv2 · Atmospheric-ocean interaction · SSiB2 · Modes of variability · 
Decadal variability

1 Introduction

Significant dramatic decadal climate variability and change 
have occurred in various monsoon areas during the past 
century (e.g., East Asia: Li et al. 2004; Ding et al. 2008; 

Fu et al. 2009; Zhou et al. 2009; Lei et al. 2011; Ha et al. 
2012; Yim et al. 2014; Lee et al. 2017; West Africa: Row-
ell et al. 1995; Mohino et al. 2011; Xue et al. 2016a, b; 
India: Krishnan and Sugi 2003; Goswami et al. 2006; Han 
et al. 2014; South America: Zhou and Lau 2001; and many 
others). Multi-decadal prediction has been one of the most 
challenging subjects in climate science because of various 
underlying uncertainties in the natural system’s variability 
under various internal and external forcings and numeri-
cal climate models’ deficiencies. The prediction of climate 
variance at multi-decadal and large spatial scales is con-
sidered as a forced boundary condition problem; it appears 
as combined results of anthropogenic effects, natural vari-
ability, and external forcings such as volcanic eruptions and 
the solar cycle, which make the problem more complicated 
(e.g., Meehl et al. 2009).

Multi-decadal simulation of the historical period (i.e., 
hindcast) has become a useful way of examining the perfor-
mance of climate models and investigating the contribution 
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of various forcings to climate variability. One of the major 
key players for the large-scale long-term variance of climate 
is the ocean, due to its large heat capacity. The ocean serves 
as a damper and source of climate variance since it stores or 
releases heat from and to the atmosphere, which lags atmos-
pheric variability but substantially strengthens its inertia. 
Since the early 1990s, the climate research community under 
the auspices of the Working Group on Coupled Modelling 
(WGCM) has established a cooperative effort by design-
ing a standardized experimental setup for the Atmospheric 
Model Intercomparison Project (AMIP; Gates 1992; Taylor 
et al. 2012) and the Coupled Model Intercomparison Project 
(CMIP; Meehl et al. 2007; Taylor et al. 2012; Eyring et al. 
2016), which reflects the importance of examining the influ-
ence of ocean coupling.

For multi-decadal predictability it is challenging to iden-
tify which requisite is more important, either giving an 
accurate (i.e., prescribed) sea surface temperature (SST) or 
having proper interaction between atmosphere and ocean 
(AO) in the model. It would be ideal if both requisites could 
be satisfied; however, it is not an easy task for climate mod-
els. While prescribed SST constrains AO interaction, AO 
feedback in coupled models could cause bias or drift of the 
simulated SST. Previous studies endeavored to address this 
issue by comparing atmospheric general circulation model 
(AGCM) and coupled general circulation model (CGCM) 
experiments. For example, Wu et al. (2007) and Kug et al. 
(2008) suggested that a feedback between SST and precipita-
tion in an AO coupled model contributes to an improved cli-
matology of simulated precipitation. Ham et al. (2014) found 
that AO coupling improves capturing of climatology, espe-
cially precipitation and tropical variance, in their Global/
Regional Integrated Model System (GRIMs) (Hong et al. 
2013) simulation. Infanti and Kirtman (2017) found that pre-
diction skill and predictability are more influenced by error 
in forecasted SST field than the AO interaction itself in their 
Community Climate System Model version 4.0 (CCSM4) 
simulation. Dong et al. (2017) found that climatology and 
variance of precipitation is more sensitive to AO coupling 
than those of surface temperature in the Met Office Unified 
Model (MetUM) simulation. They emphasized that having 
AO coupling is crucial for predicting East Asian and Aus-
tralian monsoons. There are a few recent efforts trying to 
address both requisites by adjusting ocean fields in CGCMs 
via data assimilation approaches (e.g., Dong et al. 2016; Lin 
et al. 2016); however, the majority of climate models are not 
yet at that stage of development.

The National Center for Environmental Prediction 
(NCEP) Climate Forecast System version 2 (CFSv2) is one 
of the most widely used models in the climate prediction and 
research communities (Saha et al. 2014). Its original version, 
CFS (Saha et al. 2006), and the upgraded version, CFSv2 
(Saha et al. 2014), have been widely used for operational 

sub-seasonal to interannual predictions (e.g., Yuan et al. 
2011, 2013; Mo et al. 2012; Yoon et al. 2012; Jiang et al. 
2013; Pokhrel et al. 2016; Pillai et al. 2017; Krishnamur-
thy 2017), the generation of reanalysis datasets (Saha et al. 
2010), and many other research projects (e.g., Kim et al. 
2012a, b; De Sales and Xue 2013; Goswami et al. 2014; 
Pokhrel et al. 2012; Huang et al. 2015; Kumar and Wang 
2015; Bombardi et al. 2015a; Sahai et al. 2015; Shin and 
Huang 2016; Krishnamurthy 2018; and many others). For 
longer temporal considerations, the NCEP has conducted the 
CMIP-type runs with the focus on behavioral aspects, such 
as whether the system is stable or drifting due to assorted 
technical issues (Saha et al. 2014). The Center for Ocean-
Land-Atmosphere Studies (COLA) conducted CMIP5-type 
decadal climate model simulations (Bombardi et al. 2015b) 
using CFSv2, but for the set of decadal simulations, indi-
vidual run were re-initialized every 5 years. Their results 
suggested that “the reduction of model biases may be the 
most productive path towards improving the model’s dec-
adal forecasts (Bombardi et al. 2015b)”. A few studies have 
conducted a continuous multi-decadal simulations of the 
CFSv2. For example, Shin and Huang (2016), and Mohan 
at al. (2018) conducted a 30-year simulations starting from 
1980, while Shukla and Kinter (2015) conducted 52-year 
simulations starting from 1950. They analyzed the climato-
logical annual cycle over the Asian monsoon regions.

The University of California, Los Angeles (UCLA) ver-
sion of CFSv2 (hereafter referred to as UCLA-CFSv2) has 
been developed by coupling the Simplified Simple Bio-
sphere Model version 2 (SSiB2; Xue et al. 1991; Zhan et al. 
2003) as a land surface modeling component, replacing the 
Noah land surface model (Ek et al. 2003) that was originally 
being implemented in the NCEP CFSv2 (Saha et al. 2014). 
The SSiB2 is a state-of-the-art vegetation biophysical model 
that preserves energy, water, and momentum conservation at 
the atmosphere-land surface interface with consideration of 
the photosynthesis process for surface carbon emission and 
transpiration (Xue et al. 1991; Zhan et al. 2003). The imple-
mentation of the SSiB in the earlier version of the NCEP 
AGCM, namely the Global Forecasting System (GFS; Xue 
et al. 2016b), and the UCLA Atmospheric General Circula-
tion Model (AGCM; Arakawa 2000; Mechoso et al. 2000) 
highlighted the importance of climate–vegetation biophysi-
cal processes (Xue et al. 2004, 2006, 2010, 2016a, b; Kang 
et al. 2007; Ma et al. 2011, 2013a, b), and the impact of dust 
on the West African, South and East Asian, as well as Ama-
zonian regional climates (Gu et al. 2016, 2017).

This study aims to comprehensively examine the perfor-
mance of multi-decadal simulations of the UCLA-CFSv2 
for 60 years starting in 1949 with focus on assessment of 
the influence of two-way atmospheric-ocean interaction on 
global and regional large-scale variance and decadal change. 
In addition to characterizing the fidelity of the mean state 
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and modes of variability, we investigate multi-decadal vari-
ability on global and regional scales, including for the East 
Asian and West African monsoons, where significant change 
of summer precipitation have been observed during the last 
half century (East Asia: Wang and Ding 2006; Ding et al. 
2008; Zheng et al. 2017; West Africa: Rodríguez-Fonseca 
et al. 2011; García-Serrano et al. 2013; Paeth et al. 2017). 
This paper is organized as follows: Sect. 2 describes mod-
els, observational datasets, and experimental setup; Sect. 3 
presents results of the model simulation and its evaluation; 
and Sect. 4 summarizes the main results with discussions.

2  Data and methodology

2.1  Observations

Multiple sets of reanalysis and observation are being 
employed in this study. For precipitation, we used the 
enhanced version of the Climate Prediction Center (CPC) 
Merged Analysis of Precipitation (CMAP) (Xie and Arkin 
1997), 2.5° × 2.5° global monthly version, which is con-
structed by a combination of surface rain gauge and sat-
ellite-derived precipitation estimates, and filled gaps with 
data simulated from the NCEP/NCAR reanalysis 1 [joint 
product from the NCEP and the National Center for Atmos-
pheric Research (NCAR)] (hereafter referred to R1) (Kalnay 
et al. 1996) to provide global coverage. For temperature at 2 
meters, we used the Global Historical Climatology Network/
Climate Anomaly Monitoring System (GHCN_CAMS) grid-
ded 2 m temperature over land, which provides global cover-
age of monthly means at 0.5° × 0.5° resolution (Fan and van 
den Dool 2008). Those datasets are used for the purpose of 
evaluating simulated mean climatology. We further used the 
Climatic Research Unit (CRU) time-series (TS) Version 3.22 
temperature at 2 meters and precipitation to examine simu-
lated long-term trends. This gauge-based dataset is available 
at 0.5° × 0.5° horizontal-grid and monthly temporal resolu-
tion (Harris et al. 2014). We also used an estimate latent heat 
flux (LHF) derived from objectively analyzed air–sea fluxes 
(OAFlux) (Yu and Weller 2007) as reference to compare 
with model simulated results.

The simulated atmospheric modes of variability are 
compared against those obtained from the R1. We have 
analyzed modes of variability using the Common Basis 
Function (CBF) approach (Lee et al. 2018), which extracts 
the leading empirical orthogonal function (EOF; von 
Storch and Zwiers 1999; Xue et al. 2005) modes from the 
observations and projects them onto the model’s anomaly 
space to avoid complications in selecting the most appro-
priate model EOF to compare with observations. There 
is a long history of using this projection approach to ana-
lyze modes of variability, including for the boreal winter 

Madden–Julian Oscillation (Sperber 2004; Sperber et al. 
2005), the boreal summer intraseasonal oscillation (Sper-
ber and Annamalai 2008; Sperber et al. 2013), the PDO 
(Bonfils and Santer 2011), and for ENSO (Bonfils et al. 
2015). The CBF approach has also been used for making 
real-time experimental forecasts of the MJO (Gottschalck 
et al. 2010), in which forecast anomalies from most of 
the world’s Numerical Weather Prediction models are pro-
jected onto the Wheeler and Hendon (2004) observed mul-
tivariate basis functions. The major benefits of the CBF 
approach compared to the conventional EOF approach 
are: (1) no need to correct arbitrary sign differences of 
patterns, (2) no need to use EOF mode swapping, which 
occurs when the model’s second or third EOF mode best 
corresponds to the observed leading mode, and (3) circum-
venting the potential case in which an observed EOF mode 
is split across the multiple EOF’s modes in a model. In 
brief, the CBF approach provides a consistent framework 
to compare how well different models agree with observa-
tions. The benefits of using the CBF approach compared to 
the standard EOF approach for evaluating simulated modes 
of variability are described in detail in Lee et al. (2018).

2.2  Model and experimental setup

The UCLA version of CFSv2 is comprised of the NCEP 
Global Forecast System (GFS), the Modular Ocean Model 
version 4 (MOM4; Griffies et al. 2004) developed from the 
Geophysical Fluid Dynamics Laboratory (GFDL), and the 
SSiB2 (Xue et al. 1991; Zhan et al. 2003) as its atmos-
phere, ocean, and land modeling components, respectively 
(Fig. 1). We set the spectral discretization of the NCEP 
GFS at T126 L64, which has about 100 km (about 1°) 
of horizontal grid spacing with 64 vertical levels; while 
the MOM4 was set to 0.5° horizontal resolution and 40 
vertical levels. For the CFS integrations the ocean and 
land modeling components interactively feedback and 
exchange information with the atmospheric component 
(Fig. 1), while in the GFS integrations only the atmosphere 
and SSiB2 have two-way interaction, with prescribed 
SST given by R1 used as the ocean boundary condition 
(Table 1). Sea-ice input was given by R1.

The experimental design consists of two sets of experi-
ments (Table 1; Fig. 2); spin-up experiments to develop a 
set of initial conditions for the hindcast simulations, and 
hindcast simulations that span 1949–2008. The spin-up 
experiments are discussed in Sect. 3.1, and the hindcast 
simulations are discussed in Sect. 3.2. During the hindcast 
integrations, neither re-initialization nor bias correction 
was applied. All model integrations were conducted on the 
Stampede supercomputing resource of the Texas Advanced 
Computing Center (TACC).
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3  Results

3.1  Spin‑up simulations

We conducted spin-up simulations for the target year, i.e. 
1949, using the CFS and GFS (Fig. 2). Since the CFS 
reanalysis (CFSR; Saha et al. 2010) started from the year 

1979, it is necessary to perform spin-up runs to ensure 
a thermodynamically balanced initial condition for the 
1949–2008 simulations. Two approaches for generating 
the IC’s were tested, one with CFS and the other with 
GFS. In both approaches the initial atmospheric and land 
surface conditions were for January 1, 1979 from the 
CFSR, and both simulations were constrained by external 
forcings (i.e.,  CO2 level and solar irradiance) for 1949. The 
CFS coupled ocean-atmosphere-land spin-up experiment 
was run for 10 years using as the initial condition of the 
ocean’s three-dimensional thermodynamic structure for 
January 1949 from GECCO2 (Köhl 2015), the German 
contribution of the Estimating the Circulation and Climate 
of the Ocean project (ECCO, http://www.ecco-group .org). 
In the GFS spin-up experiment the annual cycle of 1949 
SST that was used for R1 was prescribed, and repeated for 
a total of 10 years of integration time. While the atmos-
pheric initial state adjusts quickly, the 10 years of spin-up 
allows the land surface (and in the case of CFS, the upper 
ocean state) to stabilize. Based on the comparison of the 
fidelity of the CFS and GFS spin-up simulations with R1 

Fig. 1  Schematic diagram for the coupled numerical modeling sys-
tem, CFSv2. The GFS, SSIB2, and MOM4 are respectively used for 
atmospheric, land-surface, and ocean modeling components. The 
arrows indicate ongoing exchange of variables between individual 

components as during the simulation continues. The schematic image 
of the atmospheric component is taken from MetEd (https ://www.
meted .ucar.edu)

Table 1  List of model simulation experiments

a CFS_spin-up is selected as initial condition of both CFS and GFS 
hindcast runs

Run name Ocean coupling Integration period

Initialization (spin-up) run
 CFS_spin-upa Yes 10 years
 GFS_spin-up No (prescribed SST) 10 years

Hindcast run
 CFS Yes 1949–2008
 GFS No (prescribed SST) 1949–2008

http://www.ecco-group.org
https://www.meted.ucar.edu
https://www.meted.ucar.edu
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(see below), we select the last time step of the 10-year CFS 
spin-up run, as the initial conditions for the CFS and GFS 
hindcast simulations.

Table 2 summarizes the statistics for the two spin-up sim-
ulations against the target year of R1 dataset. We calculated 
statistics for the individual seasons of simulation against the 
corresponding season of the target year in the reanalysis. For 
example, we averaged 3 months (DJF, MAM, JJA, SON) 
of model fields for every 10-year simulation. There are 4 
snapshots per year per variable, thus 40 snapshots for the 
entire simulation. The model’s output for each season in 
its 10-year spin-up run was compared to the 1949 seasonal 

mean of R1. The 200-hPa wind speed differences from CFS_
spinup and GFS_spinup with respect to R1 are 0.30 m/s and 
1.57 m/s; i.e. the difference for GFS_spinup is more than 
quintuple that of CFS_spinup, although both pattern cor-
relations (PCORs) exceed 0.83 (Table 2). The 500-hPa geo-
potential height systematic errors (BIAS) for CFS_spinup 
and GFS_spinup are − 0.03 and − 0.08 gpm respectively, 
which also indicates that GFS_spinup has more than double 
the CFS_spinup systematic errors. Overall, except for bias 
of precipitation in Table 2, CFS_spinup shows better perfor-
mance than GFS_spinup, when both are compared against 
the 1949 seasonal means of R1.

In view of the encouraging performance of the CFS_
spinup, in the remainder of this paper we concentrate on 
the CFS and GFS comparison of simulated global/regional 
climate with the CFS_spinup utilized as the initial condition 
for both the CFS and GFS integrations.

3.2  Historical hindcast simulations

3.2.1  Climatology

The last 29-year (1979–2007) hindcast simulation was 
selected for analyses of climatological fields because it is 
the longest common period covered by every observational 
reference dataset used in this study. We calculated statistics 
for individual seasons (DJF, MAM, JJA, SON) of simulation 
against the same period in R1.

Figure 3 shows the observed and simulated seasonal mean 
2-m temperature fields, averaged across the 29 years of the 
simulation, along with their respective biases relative to 
the observations. In June–July–August (JJA; boreal sum-
mer and austral winter) the observation (Fig. 3a) shows the 
maximum temperatures (30 °C or higher) is located over 

Fig. 2  Experimental setup. We 
conducted a 10-year spin-up run 
to have equilibrium model sta-
tus prior to running the 60 years 
hindcast simulations. We 
conducted two types of hindcast 
simulations using complete CFS 
components (i.e. atmospheric-
ocean coupled) and using GFS 
(excluding the ocean coupled 
part and providing prescribed 
SST from the observation)

Table 2  Time-averaged statistics of the spin-up simulations using 
CFS and GFS

Spatial pattern correlation (PCOR), bias, and root-mean-square error 
(RMSE) of seasonal (3-month) mean distribution for each variable 
against 1949 of Reanalysis-1 (R1) are listed. Statistics are obtained 
globally but in latitude range of 60S–80N. Highlighted numbers using 
bold font indicate better performance

PCOR BIAS RMSE

200 wind speed (m/s)
 CFS spin-up 0.87 0.30 6.21
 GFS spin-up 0.84 1.57 6.59

500 geopotential height (gpm)
 CFS spin-up 0.69 − 0.03 30.08
 GFS spin-up 0.63 − 0.08 31.15

Sea level pressure (hPa)
 CFS spin-up 0.79 0.00 2.45
 GFS spin-up 0.72 − 0.01 2.74

Precipitation (mm/day)
 CFS spin-up 0.63 − 0.46 2.71
 GFS spin-up 0.57 − 0.42 2.82
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northern Africa, the Arabian Peninsula, and the northern 
part of India, while the lowest temperatures (below zero) 
are mainly seen over Greenland and the southern part of 
South America. Both CFS and GFS simulate comparable 
temperature distribution over the globe (Fig. 3b, d), with 
pattern correlation coefficients larger than 0.96 (Table 3). 
The statistics for RMSE are not much different between CFS 
and GFS (Table 3), being 2.41 and 2.59 °C, respectively, 
while the corresponding systematic bias errors are 0.16 and 
− 0.2 °C, respectively. Over land the error structure is largely 
consistent between CFS and GFS, though GFS has a warmer 
bias (2–6 °C) than CFS over North America and Greenland, 
while CFS has warmer bias (1–2 °C) over Africa and India, 
which is not evident from GFS (Fig. 3c, e). Warm bias over 
North America as shown in GFS (Fig. 3e) is also shown 
from many other models (e.g., Klein et al. 2006; Ma et al. 
2014). Zhang et al. (2018) evaluated models against observa-
tion from Southern Great Plains (SGP) site of Atmospheric 
Radiation Measurement (ARM) Program and showed those 
warm bias is present in 23 CMIP5 AMIP models.

In austral summer season, December–January–Febru-
ary (DJF), simulated fields from both CFS and GFS runs 

have high spatial pattern correlation to observation, over 
0.98 (Fig. 3f, g, i; Table 3), CFS shows smaller RMSE 
but larger bias compared to GFS (Table 3). Over land, the 
structure of the temperature error is very similar in CFS 
and GFS, though the pronounced warm bias appears in 
high latitude regions of the northern hemisphere, espe-
cially the 60°N region over the Asian and American con-
tinents, is stronger in GFS than in CFS (Fig. 3f–j). The 
warm bias over the southern hemisphere is stronger in 
CFS than GFS (Fig. 3h, j). Conversely, Saha et al. (2014) 
found cold biases in high-latitude areas of the northern 
hemisphere in CFSv2, thus suggesting that the warm 
biases in Fig. 3h, j are may due to our implementation 
of the SSiB2 land parameterization. However, it is hard 
to be sure because direct comparison to result of Saha 
et al. (2014) is not an available option, which is based on 
seasonal prediction with some corrections and periodic 
re-initializations while simulation in this study is a free 
long term simulation. The majority of the CMIP5 models 
exhibits similar biases (Lee and Wang 2014), as given by 
our CFS run. Such cold/warm biases could originate from 
a variety of factors, including the vegetation distribution, 

Fig. 3  Seasonal climatology (June–July–August; JJA) of 2-m tem-
perature (units: °C) obtained from a CAMS, b CFS run, and c bias 
of CFS run (CFS minus CAMS) for the period 1979–2007. d, e Same 

as b, c but for GFS run. f–j Same as a–e, but for December–January–
February (DJF) season
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cloud cover, different ways of representing surface albedo, 
and partitioning of radiation fluxes (e.g., Xue et al. 2010; 
Diallo et al. 2014, 2015). Analyzing a 100-year continuous 
simulation, Swapna et al. (2015) reported that the CFSv2 
simulations undergo a rapid cooling reaching a global 
temperature bias of at least 1.6 °C, which, indeed did not 
appear in our simulation with SSiB2.

Figure 4 displays the seasonal climatology of precipita-
tion obtained from CMAP observation, as well as simu-
lations of the CFS and GFS, along with respective biases 
relative to the CMAP observation. In JJA both models cap-
ture the dry regions over the Middle East, Southern Africa, 
Central Australia, and the West Coast of South and North 
America (Fig. 4b, d). However, there are substantial errors 
in tropical precipitation, especially in GFS where Maritime 
Continent precipitation is substantially underestimated 
(Fig. 4c, e). This result suggests that the Maritime Continent 
dry bias is not intrinsic to the atmospheric model, but rather 
it probably arises from the lack of ocean–atmosphere cou-
pling in GFS. This dry bias is consistent to that discovered 
from results of Shukla and Kinter (2015), who conducted 
AMIP and CMIP-style simulations using NCEP CFS, and 
findings of Kang et al. (2002), who discovered underesti-
mated summer monsoon rainfall over the Asia-Western 
Pacific region in many AGCMs. Wang et al. (2004) argued 
that lack of the AO interaction may be responsible for this 
dry bias. The South Pacific Convergence Zone tends to be 
being too zonal in both simulations. Also, the cyclone track 
over the Northwest Pacific and Atlantic Oceans appears 
underestimated in GFS (Fig. 4d). Overall the precipitation 
pattern is better captured by CFS than by GFS givens its 
higher pattern correlation, lower bias over land, and smaller 
RMSE (Table 3).

Concerning monsoons, the CFS has a dry bias over India, 
which is a well-known problem in the CFSv2 (Goswami 
et al. 2014; Saha et al. 2014; Silva et al. 2014; Bombardi 
et al. 2015a; Shukla and Kinter 2015; Swapna et al. 2015; 
Devanand et al. 2018) and it is consistent with systematic 
error in CMIP5 models (e.g., Sperber et al. 2013; Li and 
Xie 2014). In CFS, over India the warm temperature bias is 
consistent with the underestimate of precipitation (Figs. 3c, 
4c). A region of pronounced difference in precipitation 
between CFS and GFS is over the Gulf of Guinea and the 
Sahel. In CFS (GFS) there is excessive (deficit) precipitation 
over the Gulf of Guinea, where the SST is overly warm (see 
Fig. 5c, f), with deficit (excessive) rainfall over the Sahel. 
This southward displacement of the convergence zone in 
CFS is similar to that in other coupled models (Cook and 
Vizy 2006) which has in part been linked to the overestimate 
of SST in the Gulf of Guinea (Richter and Xie 2008), as 
well as errors in the north–south gradient in temperature 
between the Gulf of Guinea and the Sahara (Roehrig et al. 
2013). The CFS wet bias over the northern equatorial tropic 

region of the Pacific Ocean and dry bias over the northern 
part of Southern America, the Gulf of Mexico, and East 
Asia are consistent with the results of Silva et al. (2014), 
who analyzed the discretized multi decade seasonal hindcast 
of CFSv2.

In the boreal winter season, DJF, both models show 
qualitatively comparable precipitation distribution against 
the observation with pattern correlations that exceed 0.8 
(Table 3), excepting the tropical Indian and Pacific Oceans 
the error structure is similar in CFS and GFS, in particu-
lar with wet biases over the Pacific Ocean, North America, 
Eastern Brazil and Southern Africa (Fig. 4f–j). The CFS 
run has a pronounced double-Intertropical Convergence 
Zone (ITCZ) problem (Fig. 4g), which is a common issue 
not only in CFSv2 (Silva et al. 2014), but also in many of 
modern climate models (e.g., Lin 2007; Hwang and Frierson 
2013; Oueslati and Bellon 2015; Zhang et al. 2015; Song 
and Zhang 2016). Li and Xie (2014) associated this double 
ITCZ bias with excessive downward solar radiation in the 
Southern Hemisphere mid-latitudes in climate models. The 
wet bias over the northern Pacific Ocean and North America 
and dry bias over Australia and the northern part of South 
America in the CFS simulation (Fig. 4g, h) are consistent 
with the result of Silva et al. (2014), as well for JJA (Fig. 4c). 

Table 3  Statistics of hindcast simulation using CFS and GFS

Spatial pattern correlation (PCOR), bias, and root-mean-square error 
(RMSE) of seasonal (3-month) mean distribution against observa-
tions (1979–2007; CAMS for 2-m temperature, CMAP for pre-
cipitation, and OAFlux for latent heat flux) are listed. Statistics are 
obtained globally but in range of 60S–80N. Highlighted numbers 
using bold font indicate better performance. Numbers in () denotes 
over land only

PCOR BIAS RMSE

Temperature (JJA) (°C) (°C)
 CFS (0.96) (0.16) (2.41)
 GFS (0.96) (− 0.20) (2.59)

Temperature (DJF) (°C) (°C)
 CFS (0.99) (− 0.63) (3.24)
 GFS (0.98) (− 0.03) (4.68)

Precipitation (JJA) (mm/day) (mm/day)
 CFS 0.84 (0.80) 0.61 (0.27) 1.86 (1.89)
 GFS 0.78 (0.79) 0.58 (0.40) 2.05 (1.97)

Precipitation (DJF) (mm/day) (mm/day)
 CFS 0.85 (0.80) 0.64 (0.39) 1.81 (1.95)
 GFS 0.84 (0.83) 0.64 (0.42) 1.69 (1.65)

Latent heat flux (JJA) (W/m2) (W/m2)
 CFS 0.91 27.95 37.31
 GFS 0.94 25.30 33.68

Latent heat flux (DJF) (W/m2) (W/m2)
 CFS 0.89 26.70 38.38
 GFS 0.92 26.18 36.29
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The GFS has a wide area of dry bias of 3–5 mm/day over the 
Maritime Continent (Fig. 4j). This dry bias is not shown in 
the CFS, which again emphasizes the importance of air–sea 
interaction for a more accurate simulation of precipitation.

Figure 5 shows comparison of seasonal SST climatology 
of R1 and CFS, averaged over 1979–2007 period. Since GFS 
uses prescribed SST obtained from R1, in Fig. 5 we mainly 
focus on comparing SST from CFS against SST from rea-
nalysis R1. In JJA, CFS has pronounced SST biases over the 
north Pacific and Atlantic Oceans, also being too warm adja-
cent to South America, Africa, and near 60°S (Fig. 5a–c). 
These results suggest that the inconsistencies in the AO cou-
pling do not have significant impact on the mean climate 
simulation skill of temperature, which is an encouraging 
point for the GFS simulation (Fig. 3; Table 3). In DJF, CFS 
ocean shows divided warm area over central tropical Pacific 
with a colder tongue bias at the equator (Fig. 5e, f), which 
is comparable to CMIP3 and CMIP5 ensemble average of 
SST (Zhang et al. 2015, their Fig. 1). This warm bias leads 
to double ITCZ bias in precipitation (Fig. 4). In CFS, other 
than the double ITCZ related SST bias, the structural error 

in SST during DJF (Fig. 5f) is consistent with that in JJA 
(Fig. 5c). A field of standard deviation obtained from annual 
cycle removed monthly mean SST shows comparable pattern 
between R1 and CFS (Fig. 5g, h); but with larger variance 
(i.e., square of standard deviation) appearing over equatorial 
Pacific, Northwest Pacific, and Atlantic Oceans. The vari-
ance is however overestimated by CFS over tropical Pacific, 
Indian and Atlantic Oceans (Fig. 5i).

Figure 6 shows observed and simulated latent heat flux 
(LHF) seasonal means. The LHF plays important role in 
AO interaction by exchanging heat between ocean surface 
and bottom atmosphere. Both CFS and GFS models show 
comparable pattern to the observation with high pattern cor-
relation over or around 0.9 for both seasons (Fig. 6; Table 3). 
The overestimation is particularly noticeable over the Pacific 
and southern Indian Oceans in JJA (Fig. 6a–c), and over the 
northern Pacific in the tropical region (Fig. 6d–f). Table 3 
reveals that in general, statistical values of pattern correla-
tion, bias and RMSE for simulated LHF against observation 
are better for GFS than those of CFS.

Fig. 4  Same as Fig. 3, but for precipitation (units: mm/day). Observation is obtained from CMAP
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In order to investigate the impact of LHF on updraft, 
Fig. 7 shows differences of seasonal means of LHF (Fig. 7a, 
b) and vertical velocity at 500 mb (Fig. 7c, d) between CFS 
and GFS. Note that model returns omega in Pa/s unit for 
vertical movement, it was then converted to vertical velocity 
in m/s unit. Increased LHF in CFS over the western Pacific 
warm pool in JJA (Fig. 7a) favors increased updraft (Fig. 7c), 
where GFS has significant dry bias (Fig. 4e). Similarly, 
increased LHF in CFS over the tropical Indian Ocean in 
DJF (Fig. 7b) induces increased updraft (Fig. 7d), coinciding 
with regions where GFS has dry bias (Fig. 4j). Those dry 
biases were indeed relieved in CFS (Fig. 4b, g). Overall, 
Fig. 7 indicates that the improvement of simulated precipi-
tation was induced by enhanced updraft due to increase of 
LHF over each ocean area.

To help understand the biases discussed in the global 
analyses, in addition to the global features, we also ana-
lyze a few major features in the East Asian and West 

African monsoon areas. Figure 8 shows the mean JJA of 
850 hPa wind fields over the East Asian region superim-
posed to both the mean sea level pressure and precipita-
tion from the Reanalysis-1 (R1), CFS and GFS simula-
tions. The 850 hPa wind field in R1 shows westerly flow 
over Southeast Asia merging with southwesterly flow over 
East China, Korea, and Japan following along the edge 
of the North Pacific High, which can be described by the 
curved contour line, 1010 hPa, over the Northwest Pacific 
Ocean (Fig. 8). The CFS simulation captures the southwest 
monsoon circulation and the westward extent of the sub-
tropical high (Fig. 8b). Conversely, in GFS the southwest 
monsoon circulation is weaker and it does not extend to 
the Philippines, and the subtropical anticyclone is rather 
anemic, especially off of the east coast of China (Fig. 8c). 
The wind errors in GFS lead to weaker convergence and 
hereby weaker updraft (see Figs. 7c, 8d), which together 
are responsible for the dry bias in the area (Fig. 4j).

Fig. 5  Sea-surface temperature (SST) of seasonal climatology for 
1979–2007 [JJA (left) and DJF (center)] obtained from Reanalysis-1 
(R1) (top) and CFS simulation (middle), and differences between 

them (bottom). Rightmost column is for standard deviation of annual 
cycle removed monthly anomaly of SST. Unit: °C
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Figure 9 is the same as Fig. 8 but zooms in on the West 
African region. Here we see during in the core monsoon 
season, June–July–August, the 925 hPa low-level wind 
field given by the R1 shows easterly flow over the Atlantic 
Ocean converging along the 10N latitude line, coincid-
ing to area where maximum rainband is located (Fig. 9a). 
Overall, both CFS and GFS capture the zonally shaped 
rainband, but the rainband in CFS is further spreaded and 
shifted to south for about 5° latitude (Fig. 9b–d). High 
pressure pattern over land is well captured by both simu-
lations while the GFS shows more comparable one than 
the CFS (Fig. 9b, c). Both simulations has wet bias for 
precipitation (Fig. 9b, c).

3.2.2  Variability

In this section, we examine simulated variabilities focusing 
on the latent heat flux (LHF) and extra-tropical modes of 
variability. Figure 10 shows map of temporal standard devia-
tion, which was calculated from monthly LHF time series of 
each grid after annual cycle was removed. Thus the figure 
shows magnitude of monthly LHF anomaly variability. LHF 
variance is strong over mid-latitude ocean areas, particularly 
over western Pacific and western Atlantic along the trajec-
tory of ocean current move poleward (Fig. 10a). Although 
the CFS captures those strong LHF variance region, the 
LHF variance is overestimated over the tropical Pacific and 
Indian Oceans (Fig. 10b, c). In the GFS result, however, 

Fig. 6  Seasonal climatol-
ogy (June–July–August; JJA) 
of Latent heat flux (LHF) 
(units: W/m2) obtained from a 
OAFlux, b CFS, and c GFS run 
for the period 1979–2007. d–f 
Same as a–c but for DJF season
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model globally overestimates the LHF variance, where the 
overestimation is especially strong over the western Pacific, 
around Maritime Continents, and equatorial eastern Pacific 
(Fig. 10e).

To further address the time-evolution of LHF variance, 
we calculated spatial standard deviation values of the map 
given by Fig. 10 and similar map but obtained from four 
non-overlapping 7-year period chunks of entire simula-
tion, such as for 1979–1985, 1986–1992, 1993–1999, and 
2000–2006 (Fig. 11). The GFS overestimates spatial vari-
ance of the LHF’s temporal variance while the CFS is more 
comparable to the observation (Fig. 11). Spread of mark-
ers on each bar in Fig. 11 can be considered as an indirect 

measure of time-evolution. The vertical spreads of mark-
ers for OBS and CFS are in similar amplitude, while four 
markers for GFS are almost overlapped, which means GFS 
remains too steady to have comparable long-term variation.

Figure 12 is basically similar to what shown by Fig. 10, 
however, except that the temporal standard deviation is cal-
culated from inter-annual seasonal mean time series anomaly 
to address long-term variance of LHF, instead of monthly 
anomaly time series as in Fig. 10. Since Fig. 12 is handling 
the long-term variance, it is natural that the magnitude of 
the temporal standard deviation is smaller than month-to-
month variance given by Fig. 10. The GFS still overesti-
mates variances in both seasons in global (Fig. 12e, j), like 

Fig. 7  Difference of LHF between CFS and GFS (i.e., CFS minus GFS; units: W/m2) for their seasonal average (1979–2007) for a JJA and b 
DJF. c, d Same as a, b, but for vertical velocity at 500-hPa level (units: m/s)
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from the monthly variance (Fig. 10). It is distinct that LHF 
inter-annual variance of CFS shows better agreement to the 
observation than that of GFS, in both JJA and DJF seasons.

We selected four extratropical variability modes using 
anomalies of sea-level pressure: the Northern Annular Mode 
(NAM), the North Atlantic Oscillation (NAO), the Pacific/
North American pattern (PNA), and the Southern Annular 
Mode (SAM). For all modes, we follow the approach of 
Bonfils et al. (2015) by removing the area-weighted mean 

over the EOF domain at each time step to remove from the 
mode of variability any potential regional manifestation due 
to global-scale climate change. We use the Common Basis 
Function (CBF) approach, described in Lee et al. (2018) for 
the analysis of CMIP5 Historical simulations, to get the pat-
terns of simulated modes of variability. In the CBF approach 
the observed EOF pattern is projected onto a model’s anom-
aly field, resulting in the CBF principal component (PC) 
time series. Using linear regression between the CBF PC 

Fig. 8  Seasonal climatology (June–July–August) of sea level pressure 
(SLP) (contours, hPa), 850 hPa wind (vector, m/s), and precipitation 
(shaded, mm/day) over East Asia obtained from a CMAP (precipita-
tion) and Reanalysis-1 (R1) (other variables), b CFS run, and c GFS 
run for the period of 1979–2007. Note that CMAP precipitation is 

obtained for 1979–2007 by the limited covering period of the data-
set. Difference between CFS and GFS models (CFS minus GFS) is 
shown in d. Boxes indicate the averaging area for WF index calcula-
tion (Wang and Fan 1999), which will be revisited by Fig. 14
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time series and the model’s anomaly field, the models rep-
resentation of the observed mode is reconstructed. We use 
anomalies of DJF sea level pressure from the reanalysis, R1, 
to obtain the observational leading EOF mode for NAM, 
NAO, and PNA, while the JJA anomalies are used for SAM. 
The winter season is selected, since it has the strongest sig-
nal in the observations (Lee et al. 2018).

The CFS generates results more comparable to obser-
vation than the GFS for NAM, NAO, and PNA (Fig. 13). 
For NAM, the reanalysis field shows a dipole: one over 
the polar region and the other over the North Atlantic and 

Europe (Fig. 13a), which is captured by the CFS although 
with an overestimated amplitude over the Northern Pacific 
(Fig. 13b). However, the GFS does not properly capture the 
intense region over the North Atlantic and Europe, whereas 
it does capture a false region over the Northern Pacific as 
CFS does (Fig. 13c). For NAO, the reanalysis shows a dis-
tinct contrast between the northern and southern parts of 
the domain of interest (Fig. 13d). The intensity is reason-
ably captured by the CFS (Fig. 13e), while it is underes-
timated in the GFS (Fig. 13f). For PNA, there is a distin-
guishable region of interest over the Northern Pacific, and 

Fig. 9  Same as Fig. 8, but over West Africa with 925 hPa wind vector
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CFS reproduces it faithfully at its exact location while it 
is shifted toward the east in the GFS (Fig. 13g–i). While a 
dipole gradient structure of PNA in GFS (Fig. 13i) is more 
comparable to R1 (Fig. 13g) than CFS does (Fig. 13h), the 
shape of bull’s-eye-like structure and its location is better 
captured by CFS. It is supported by statistical values given at 
Table 4, although GFS gives closer percentage of explained 
variance to that of R1 than CFS does. For SAM, however, 
the CFS has weaker variance than observed, whereas the 
GFS shows better reproducibility (Fig. 13j–l).

We summarized in Table 4, the skill metrics utilized to 
quantify how well the simulations compare to observations. 
Our metrics include the pattern correlation (PCOR) between 

simulated versus observed and RMSE of the simulations. 
The table also lists the ratio of standard deviations obtained 
from observed and simulated PC time series, i.e. model/
observation—the ideal number should be one. We compared 
the percentage of variance as well, which represents how 
much of the total variance is explained by the given pat-
tern. Consistent with the results shown in the spatial map 
comparison (Fig.  13), the northern hemisphere modes, 
NAM, NAO, and PNA, are better captured by the CFS than 
the GFS, while it is opposite for the southern hemisphere 
mode, SAM, according to the statistical values. It is how-
ever arguable that the PNA pattern of the GFS (Fig. 13i) 
could be more reasonable as the PNA pattern itself indicates 

Fig. 10  Map of temporal stand-
ard deviation calculated from 
monthly annual-cycle-removed 
latent heat flux anomaly (units: 
W/m2) time series for each grid 
point, obtained from 1979 to 
2007 of a OAFlux and b CFS, 
and c their difference (i.e., CFS 
minus OAFlux). d, e Same as b, 
c but for GFS
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dipole structure as shown from the reanalysis (Fig. 13g). 
The improvements for northern hemisphere modes may be 
related to enhanced capturing of inter-annual variance of 
seasonal LHF in the CFS (Fig. 12). This indicates that in 
terms of large-scale atmospheric variance modes, interac-
tion between atmosphere and ocean plays an important role, 
especially for those modes in the Northern Hemisphere.

We evaluate temperature trends in Fig. 14, which shows 
the anomaly time series of seasonally averaged land sur-
face temperature over select regions: entire globe, North-
ern and Southern hemisphere, East Asia, and West Africa. 
To get those time series, firstly we masked out ocean 
area so only the land grids were considered. The sum-
mer time seasonal mean for each year then was calculated 
(JJA and DJF for Northern and Southern Hemispheres, 
respectively), and the anomaly time series over each grid 
was obtained. We then applied an area average to have a 
one-dimensional time series and finally applied a 9-year 
running average to minimize noise and to focus on the 
major decadal trend. Overall, areas that have an observa-
tional temperature increasing trend were well captured by 
both CFS and GFS experiments (Fig. 14a–e). In general, 
GFS shows better agreement with observed trends than 
the CFS. We also selected two monsoon regions; East 
Asia and West Africa, for further evaluation of regional 
trends. The temperature trend from the GFS experiment 
has better agreement with observation than the CFS in 
terms of temporal correlation and RMSE over East Asia, 
while that is opposite over West Africa (Fig. 14d, e). GFS 
shows too much temperature drop in the 1970s compared 

to the observation while CFS does not show noticeable 
temperature drop to under the linear trend line (Fig. 14e). 
We speculate that the significant cold bias of GFS in the 
1970s is related to the precipitation, particularly where 
GFS initiates West Africa drought in the 1980s which was 
started in the 1970s in the observation (see Fig. 15b).

Figure 15 shows the JJA anomalies variation of pre-
cipitation over both East Asia and West Africa. The time 
series was derived by the same approach as in Fig. 14, but 
we removed the linear trend to focus on higher frequency 
variability rather than on the multidecadal trends. Over 
East Asia, it is clear that CFS follows the observational 
record better than the GFS (Fig. 15a). During the 1970s, 
the below average period is well captured by the CFS 
while the GFS shows the opposite behavior. Over West 
Africa, the observed drought spans ~ 1970–1993. In GFS 
the onset of the drought is delayed compared to observa-
tions, with the recovery being well-simulated. However, 
CFS is less realistic, with the onset and termination of the 
drought occurring too early (Fig. 15b).

To analyze decadal change in detail, we focused on the 
East Asian region where significant decadal and interdecadal 
variability of precipitation has been observed (e.g., Wang 
and Ding 2006; Ding et al. 2008; Zheng et al. 2017). Here, 
we compared the summer precipitation of averages of the 
1980s (1980–1989) and 1950s (1950–1959). Observational 
analysis shows an increase of precipitation in the middle of 
Eastern China whereas decreasing occurs over both northern 
and southern part of East China (Fig. 16a). We examined 
how models reproduced this difference pattern. Both the 
CFS and GFS runs captured decrease of precipitation over 
the southern part (Fig. 16b, c). The CFS run reproduces 
increasing area over the middle part and decreasing over the 
northern part (Fig. 16b), whereas the GFS run was not able 
to reproduce appropriately, but rather displays wet condi-
tions over the northern part of China.

Regarding the interannual analysis of East Asian mon-
soon, interannual time scales the zonal wind shear index 
of Wang and Fan (1999, hereafter the WF index) is closely 
linked to variations of the Meiyu/Baiu/Changma rainband 
(Wang et  al. 2008), with the WF index = U850 (5–12N, 
100–130E) − U850 (20–30N, 110–140E), where presented 
as boxes in Fig. 8, using JJA averaged data for each year. 
Figure 17 compares the average and interannual variability 
of the WF index over the period of 1949–2008 from R1, 
CFS, and GFS. It is clear that CFS has an average range 
comparable to the reanalysis, while the GFS underestimates 
WF index in the overall period, which is caused by failure 
of capturing the westerly wind over the Southeast Asian 
region (Fig. 8c, d). The underestimation of the median WF 
index in GFS is consistent with the misrepresentation of the 

Fig. 11  Spatial standard deviation of the temporal standard deviation 
map for OAFlux, CFS, and GFS given as Fig. 12a, b, d, respectively 
(grey bars). The four “x” markers on each bar indicate spatial stand-
ard deviation of the temporal standard deviation map as similar to the 
grey bars but calculated from non-overlapping 7-year chunks (1979–
1985, 1986–1992, 1993–1999, and 2000–2006) individually
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western Pacific subtropical high (see Fig. 8c), which with 
weak convergence in turn induces a weak moisture supply, 
thus resulting in dry conditions over the region (see Fig. 4j). 
Overall, comparison between GFS and CFS indicates that 
CFS has more advantage in depicting the atmospheric pro-
cesses associated with the WF monsoon index (Fig. 17). In 
agreement with Jiang et al. (2013), our result indicates that 
the AO is a key element for a reasonable prediction of the 
East Asian monsoon.

4  Summary and discussion

We conducted multi-decadal hindcast simulations using 
the UCLA-CFSv2, a branched version of NCEP CFSv2 
coupled with the SSiB2 land surface parameterization, 
and investigated the impact of interactive atmospheric-
ocean (AO) feedback on global and regional variability 
by turning on/off the ocean coupling. To set the initial 

condition (IC) of the multi-decadal simulation, we con-
ducted a constrained 10-year spin-up simulations in two 
different ways. After careful evaluation of results of the 
spin-up simulations, we selected the “CFS spin-up” as 
the IC to start UCLA-CFSv2 multi-decadal simulations. 
The UCLA-CFSv2 multi-decadal simulations were con-
ducted in two different ways for its 60-year continuous 
integration: the “CFS run” is a coupled run using an ocean 
modeling component, while the “GFS run” is atmosphere 
standalone run using a prescribed SST given by the reanal-
ysis R1. We evaluated the climatology of temperature, pre-
cipitation and latent heat flux (LHF), variability of LHF, 
atmospheric modes of variability (which are defined with 
EOF analysis of sea level pressure), and decadal variations 
of temperature and precipitation over global and selected 
regional areas.

For climatology, we found the AO interaction plays an 
important role to advance the model’s reproducibility, espe-
cially for precipitation. A remarkable dry bias areas of the 

Fig. 12  Interannual variability of seasonal LHF field (unit: W/m2). a–
c Maps are for temporal standard deviation calculated from JJA aver-
aged latent heat flux anomaly time series for each grid point, obtained 

from 1979 to 2007 of a OAFlux and b CFS, and c their difference 
(i.e., CFS minus OAFlux). d, e Same as b, c but for GFS run. f–j 
Same as a–e, but for DJF season
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Fig. 13  Pattern of extratropical variability modes, NAM (top), NAO (2nd row), PNA (3rd row), and SAM (bottom) obtained from Reanalysis-1 
(R1) as leading EOF (left), and from CFS (center) and GFS runs (right) derived from CBF approach [units: hPa] (continue to next page)
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GFS run, over the Western Pacific in JJA and Maritime Con-
tinent in DJF, were improved/corrected in the CFS. In fact, 
enhanced LHF in CFS over those areas increased vertical 
velocity, consequently causing more precipitation, alleviated 

the dry biases of the GFS. The alleviation of the dry biases 
is consistently shown by Jiang et al. (2013) who analyzed 
28 years of seasonal and inter-seasonal hindcasts of CFSv2, 
and Shukla and Kinter (2015) who conducted 52 years of 
hindcast simulation using CFSv2, in which they compared 
AMIP- and CMIP-type CFSv2 simulations. The seasonal 
climatology patterns of precipitation derived by the CFS are 
comparable to those of Silva et al. (2014). While Silva et al. 
(2014) evaluated the climatology given by multiple seasonal 
hindcasts of CFSv2, our result was derived from a continu-
ous multi-decadal simulation without re-initialization during 
the integration period. This result is encouraging, attesting 
to the robustness of UCLA-CFSv2. Some common issues 
of CFSv2 remained in our results, such as dry bias over 
India (Goswami et al. 2014; Saha et al. 2014; Silva et al. 
2014; Bombardi et al. 2015a) and the double ITCZ over 
the tropical Pacific Ocean (Silva et al. 2014). However, it is 
worth mentioning that these errors were not amplified in our 
simulation, which is also encouraging since our simulation 
is a much longer integration than that of the aforementioned 
studies.

The SST bias was unavoidable in the coupled run, not 
surprisingly. However, we also showed variability of LHF in 
both month-to-month and inter-annual time scales has been 
significantly improved in the coupled simulation, CFS run. 
For modes of variability, we speculate that the AO interac-
tion has played a crucial role. We selected four different 
extratropical atmospheric modes of variability, NAM, NAO, 
PNA, and SAM. For the northern hemisphere, it is distinct 
that having AO interaction enhances reproducibility of the 
variance mode except for the southern hemisphere where 
having accurate SST field might be contributing more to the 
reproducibility than the AO interaction.

Fig. 13  (continued)

Table 4  Spatial pattern correlation (PCOR), root-mean-square error 
(RMSE) of map of model’s variability mode against Reanalysis-1 
(corresponding to Fig. 10), ratio of standard deviation of PC (model/
observation; Std_ratio), and percentage of variance explained by the 
mode (% Var)

Note that ideal numbers for PCOR, RMSE, and Std_ratio are respec-
tively one, zero, and one. Reference % Var from the observation is 
in parentheses. The numbers that are closer to the ideal or reference 
value are highlighted with bold font

Modes Statistics Model

CFS GFS

NAM PCOR 0.93 0.89
RMSE 0.77 0.99
Std_ratio 0.77 0.55
% Var (28.0%) 26.2% 18.3%

NAO PCOR 0.97 0.96
RMSE 0.74 1.25
Std_ratio 0.83 0.58
% Var (46.3%) 42.0% 27.8%

PNA PCOR 0.98 0.90
RMSE 0.69 0.81
Std_ratio 0.80 0.74
% Var (39.6%) 34.4% 38.7%

SAM PCOR 0.95 0.94
RMSE 0.84 0.71
Std_ratio 0.72 0.83
% Var (42.7%) 29.0% 37.6%
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Fig. 14  Time series of 9-year averaged land surface temperature 
anomaly (units: °C) obtained from CRU, CFS, and GFS for JJA of 
a global (60S–80N) and b Northern Hemisphere (EQ-80N), for c 

DJF of Southern Hemisphere (60S-EQ), d JJA of East Asia (20–50N, 
100–140E), and e JJAS of West Africa (10S–30N, 20W–20E)
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There are two factors that contribute to the proper simula-
tion of the AO interaction: (1) the mean status of the SST, 
and (2) the processes that contribute to the AO exchange. 
Our results shows the second process is equally important 
and is the first order effect that affecting the AO exchange, 
which has been one of the main purposes to develop the 
coupled model. Our results suggest that the AO interaction 
showing as variance of LHF has contributed to improve the 
performance of multi-decadal climate simulation in terms 
of climatology (in particular global JJA precipitation and 
2-m temperature over land) and modes of variability. Both 
the CFS and GFS simulations have robustness in capturing 
increasing linear trend of the observed temperature anomaly. 
We further focused on East Asian and West African mon-
soon regions to examine the model’s performance in captur-
ing regional trends and decadal changes. The AO interac-
tion is found to be more crucial than the prescribed SST 
for reproducing inter-decadal variability of the East Asian 
summer monsoon, while the prescribed SST contributed 
more to advancing the model’s performance for the West 
African monsoon. The findings for East Asian monsoon are 
supported by the results of Dong et al. (2017) who high-
lighted role of AO interaction for East Asian and Austral-
ian monsoons by comparing AGCM and CGCM experi-
ments, Zou and Zhou (2013) who argued importance of AO 
interaction for western North Pacific summer monsoon by 
implementing partially air–sea coupled model over the area, 
Song and Zhou (2014) who showed interannual EASM pat-
tern is better simulated in CGCMs than that in AGCMs in 

CMIP5, and Wang et al. (2005) who suggest that the cou-
pled ocean–atmosphere processes are crucial in the monsoon 
regions where atmospheric feedback on SST is critical. Note 
this is only our model’s results and more tests with different 
models are necessary to further study this issue.

There are encouraging point and limitations for this study. 
The encouraging point is that our UCLA-CFSv2 simulation 
results is not showing a significant decadal spin-up period 
associated with a strong global cooling trend, which was 
occuring in the original CFSv2 (Saha et al. 2014; Swapna 
et al. 2015). On the other hand, Infanti and Kirtman (2017) 
presented a contradictory result to ours; they showed pre-
diction skill is more influenced by error in forecasted SST 
field rather than the AO interaction. More comprehensive 
investigation is required to determine the factors that pro-
duced these differences. Limitations of this study are: (1) 
detailed regional-scale small features were not much evalu-
ated while we were focusing on a high-level overview of the 
evaluation, and (2) the study is based on a single member 
simulation without having ensemble members, which leads 
the result to be too deterministic. Further currently on-going 
researches will engage ensemble simulations to consider 
internal uncertainty of the model. By doing so, we expect 
we will be at a better position to analyze the leading factor 
of the decadal change. (3) Analysis for high-frequency (daily 
or 3–6 hourly) output of model is not included in this study, 
which has limited clear identification for how AO feedback 
has improved the model performance. (4) Another source of 

Fig. 15  Time series of de-trended 9-year averaged land precipitation anomaly (units: mm/day) obtained from CRU, CFS, and GFS for a JJA of 
East Asia and b JJAS of West Africa
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uncertainty in this study may be caused by the lack of full 
consideration of aerosols. The East Asian summer monsoon 
(EASM) region is known to be influenced by aerosol effects, 
although response to aerosols is highly uncertain (e.g., Guo 
et al. 2013; Gu et al. 2016; Wang et al. 2015).

Despite limitations, this study is the first to provide 
an overview evaluation of a continuous multi-decadal 

simulation of UCLA-CFSv2, with highlights on impor-
tance of AO coupling for reproducing appropriate climate 
variability. Further study will follow, with consideration to 
overcome the aforementioned limitations.

Fig. 16  Decadal change of East Asian summer monsoon (EASM) precipitation: map shows difference of JJA average precipitation (units: mm/
day) between 1980s (1980–1989) and 1950s (1950–1959) obtained from: a CRU observations, b CFS and c GFS runs
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