

It appears that the mind is equipped at the outset in constructing. The evolution of cognitive biases is a well-known phenomenon. One of the most dramatic examples is the evolution of the human mind, which we review in this chapter. It appears that many biases exist, individual or collective, doing so in a logically systematic way.

As well as being useful because they often reflect core psychological principles, these biases are the result of an evolved mind. We can gain insights into the psychological processes that underlie these biases if we examine the biological and psychological principles that might explain why humans evolved them. We propose that the evolution of these biases reflects the mechanisms by which humans can cope with the complexity of the natural world.

THE EVOLUTION OF HUMAN BEHAVIOR

"Rational" decision-making is often seen as the basis for human behavior. It is often assumed that humans are computationally well-equipped to make decisions. However, this is not the case. Most natural problems have multiple solutions, and the solutions that are favored by nature are often not the most obvious or rational... but may often be optimal.

Cognitive biases present a challenge to the idea of rational decision-making. Because they depart from rational decision-making, cognitive biases are often perceived as flaws instead of examples of evolutionary adaptation. (This is sometimes referred to as the "rationality illusion"). The question that the scientist is asking is whether a feature has been selected because of its evolutionary benefits, or because it is a useful function is. Often the science of evolutionary psychology examines both question and its effects. However, selecting useful features and their effects. The scientist's task is to determine whether a feature is useful, how it solves a particular problem, and whether it is useful, i.e., whether the trait is evolutionary.

In evolutionary psychology, domain specificity is a key concept. As Tooby and Cosmides have argued, the mind is equipped to solve certain types of problems for which it was selected.
It appears that the "there" of familiar experience is one that the mind has a role in constructing. The mind translates the properties of the world, such as electromagnetic radiation and the contours of objects, into useful units of information. One of the most dramatic demonstrations of the role of the mind in our apprehension of the world is the existence of cognitive biases. A wide range of biases, which we review in the next section, has been discovered by psychologists. Where biases exist, individuals draw inferences or adopt beliefs where the evidence for doing so in a logically sound manner is either insufficient or absent.

As well as being interesting in their own right, biases are important to study because they often reveal the design of the mind. In this chapter, we present a three-category framework for understanding cognitive biases from an evolutionary perspective, and we discuss what biases in each category can tell us about the evolved mind. We conclude by describing the implications of this evolutionary psychological perspective on biases. For example, the functional specificity of these biases reveals the intricacy of the mind’s design and supports the key hypothesis that the mechanisms of mind are domain-specific. The conclusion that many biases are not the result of constraints or mysterious irrationalities also speaks to the ongoing debate about human rationality. Our perspective suggests that biases often are not design flaws, but design features.

THE EVOLUTIONARY FOUNDATIONS OF COGNITIVE BIAS

"Rational" decision-making methods . . . logic, mathematics, probability theory . . . are computationally weak: incapable of solving the natural adaptive problems our ancestors had to solve reliably in order to reproduce. . . . This poor performance on most natural problems is the primary reason why problem-solving specializations were favored by natural selection over general-purpose problem-solvers. Despite widespread claims to the contrary, the human mind is not worse than rational . . . but may often be better than rational.

—Cosmides & Tooby, 1994, p. 329

Cognitive biases present something of a challenge to the evolutionary psychologist. Because they depart from standards of logic and accuracy, they appear to be design flaws instead of examples of good engineering. Cognitive traits can be evaluated according to any number of performance criteria (logical sufficiency, accuracy, speed of processing, etc.), and the value of a criterion depends on the question the scientist is asking. The question facing the evolutionary scientist is to identify whether a feature has been shaped by selection and, if so, to determine what its function is. Often the scientist has information about only what the feature does—its effects. However, selection often generates a tight fit between the design features and their effects. To the evolutionary psychologist, therefore, the evaluative task is not whether the cognitive feature is accurate or logical, but how well it solves a particular problem relative to other problems that it could potentially solve (i.e., whether the trait solves a problem with proficiency and specificity).

In evolutionary psychology, proficiency and specificity interact in the concept of domain specificity. As Tooby and Cosmides (1992) and others have argued, it is likely that the mind is equipped with function-specific mechanisms adapted for special purposes—mechanisms with special design for solving problems of mating, which
are separate, at least in part, from those involved in solving problems of food choice, predator avoidance, and social exchange (see Boyer & Barrett, Chapter 3, this volume). In the evaluation of cognitive biases, demonstrating domain specificity in solving a particular problem is a part of building a case that the trait has been shaped by selection to perform that function. The evolved function of the eye, for instance, is to facilitate sight because it does this well (it exhibits proficiency), the features of the eye have the common and unique effect of facilitating sight (it exhibits specificity), and there are no plausible alternative hypotheses that account for the eye's features.

Some design features that appear to be flaws when viewed in one way are revealed to be adaptations when viewed differently. If we only consider the fact that high fevers make people feel miserable, and in extreme cases can lead to death, the capacity to develop fever appears a terrible flaw in design. However, if we ask what the evolved function of fever is, we come to learn that elevated body temperature may be a natural defense against pathogens. This hypothesis led to research showing that fever-reducing medicines increase susceptibility to infection and prolong its resolution, thus challenging the common use of aspirin as a treatment for upper respiratory infections and influenza (see Williams & Nesse, 1991, for a review). Viewed in light of evolution, the capacity for fever may in fact be well-designed.

In sum, there may be many evolutionary reasons for apparent design flaws, and a close examination often provides insight into the evolutionary forces that shaped them and their functions. We propose that analogous logic may be applied to understanding cognitive biases. Cognitive biases can arise for three reasons: (1) Selection may discover useful shortcuts that tend to work in most circumstances, though they fall short of some normative standards (heuristics); (2) biases can arise if biassed solutions to adaptive problems resulted in lower error costs than unbiased ones (error management biases); and (3) apparent biases can arise if the task at hand is not one for which the mind is designed (artifacts). Table 25.1 presents this

| Table 25.1 |
| Evolutionary Taxonomy of Cognitive Biases |
| Type of Bias | Examples |
| Heuristic: Bias results from evolutionary or information processing constraints; mechanisms work well in most circumstances, but are prone to break down in systematic ways. |
| 1. Use of stereotypes |
| 2. Fundamental attribution "error" |
| 3. One-reason decision strategies |
| Error management bias: Selection favored bias toward the less costly error; although error rates are increased, net costs are reduced. |
| 1. Auditory looming (Figure 1) |
| 2. Sexual overperception by men (Figure 2) |
| 3. Commitment underperception by women (Figure 3) |
| 4. Positive illusions |
| Artifact: Apparent biases and errors are artifacts of research strategies; they result from the application of inappropriate normative standards or placement of humans in unnatural settings. |
| 1. Some instances of base-rate neglect in statistical prediction |
| 2. Some instances of the confirmation bias |

Perhaps the most compelling product of processing limitations are limited, human breakdown in systems. Indeed, in part to the influence of Kahneman, 1974; see Gilovich, 1991; Kahneman, 2003, for a review), demonstrated that heuristic standards based on sequences of coin flips are more likely than the human (1974) pointed out. Kahneman (1974) contains too many that expression of a similarly win is now due, even Kahneman, 1974).

Another example in another Subjects read a particularly and very bright. She concerned with issues of nuclear demonstration options was more probably and active in the female than either of the select (b) as the more probability effect the "conjunction"

Tversky and Kahneman mental shortcuts: "People to reduce the complex task with simpler judgment operations fallacy are attributes representativeness, or that according to this account, women domness than are series of a feminist; thus particular teller alone.

Effects of Time and Memory

The notion that biases appeal. As expressed by
taxonomy. We do not intend these categories to be fully exhaustive or mutually exclusive; we do propose that they are a useful way of organizing research on cognitive bias and gaining insight into why biases occur.

HEURISTICS

Perhaps the most commonly invoked explanation for bias is that they are a by-product of processing limitations—because information processing time and ability are limited, humans must use shortcuts or rules of thumb that are prone to breakdown in systematic ways. This explanation for biases can be traced in large part to the influential work of Kahneman and Tversky (e.g., Tversky & Kahneman, 1974; see Gilovich, Griffin, & Kahneman, 2002, for a recent review; see Kahneman, 2003, for a recent theoretical treatment). Kahneman and Tversky demonstrated that human judgments often departed substantially from normative standards based on probability theory or simple logic. In judging the sequences of coin flips, for example, people assessed the sequence HTHTHT to be more likely than the sequence HHHTTT or HHHHTTH. As Tversky and Kahneman (1974) pointed out, while in some sense representative, the first sequence contains too many alternations and too few runs. The “gambler’s fallacy” is the expression of a similar intuition. The more bets lost, the more the gambler feels a win is now due, even though each new turn is independent of the last (Tversky & Kahneman, 1974).

Another example is the famous “Linda problem” (Tversky & Kahneman, 1983). Subjects read a personality description: “Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice and participated in anti-nuclear demonstrations.” They were then asked to determine which of two options was more probable: (a) Linda is a bank teller or (b) Linda is a bank teller and active in the feminist movement. Although the conjunction cannot be more likely than either of its constituents, between 80% and 90% of subjects tend to select (b) as the more probable option. Tversky and Kahneman (1983) dubbed this effect the “conjunction fallacy.”

Tversky and Kahneman attributed these and other biases to the operation of mental shortcuts: “People rely on a limited number of heuristic principles which reduce the complex tasks of assessing probabilities and predicting values to simpler judgmental operations” (1974, p. 1124). The gambler’s fallacy and the conjunction fallacy are attributed to one of the most commonly invoked heuristics, representativeness, or the way in which A resembles or is representative of B. According to this account, alternating heads and tails is more representative of randomness than are series containing runs. The description of Linda is representative of a feminist; thus participants choose feminist and bank teller rather than bank teller alone.

EFFECTS OF TIME AND MOTIVATION

The notion that biases result from the use of simplifying heuristics has logical appeal. As expressed by Arkes (1991), “The extra effort required to use a more
sophisticated strategy is a cost that often outweighs the potential benefit of enhanced accuracy” (pp. 486–487). This cost can affect the evolution of cognitive mechanisms at two levels: (1) There may be costs in evolutionary terms because the development of certain brain circuits will either increase the length of ontogeny or remove potential energetic allocation away from the development of other mechanisms, and (2) there may be costs in real time because decisions using complex algorithms will take longer or require more attentional resources than decisions using simpler alternatives. Adaptive decisions often need to be made fast, and this may well constrain the type of strategies that are optimal. Evidence from a variety of sources demonstrates that people do indeed solve problems differently when under time pressure or when their motivations to be accurate are reduced.

Fiske (1993) proposed that the social perceptions of individuals occupying positions of higher power in social hierarchies are less accurate than those lower in the hierarchy. Those higher in power are more likely to endorse stereotypes about others than to attend to individualizing information specific to the target being evaluated, which presumably enhances accuracy (Goodwin, Gubin, Fiske, & Yzerbyt, 2000). Individuals assigned more decision-making power in reviewing internship applications attend more to stereotype consistent information and less to stereotype disconfirming information (Goodwin et al., 2000). Similarly, in a study of two student groups competing for university funding, Ebenbach and Keltner (1998) found that individuals reporting more personal power judged their opponents’ attitudes less accurately. A common interpretation of findings such as these is that lower power individuals occupy a more precarious social position and must, therefore, allocate more time and energy to social judgments; more powerful individuals enjoy the luxury of allocating their cognitive efforts elsewhere (Keltner, Gruenfeld, & Anderson, 2003).

Some of the best evidence for cognitive heuristics comes from the abundant literature on the fundamental attribution error (FAE). The FAE occurs when people are asked to make an inference about the mental state or underlying disposition of an actor. Although there are differences of opinion about the precise nature of the FAE (e.g., Sabini, Siepmann, & Stein, 2001), a relatively descriptive account is that people tend to infer that an actor’s internal state corresponds to expressed behavior more than appears to be logically warranted by the situation (Andrews, 2001; Ross, 1977).

In the classic experiment, Jones and Harris (1967) gave subjects either a pro-Castro essay or an anti-Castro essay purportedly written by a student. In one set of variants (the choice variants), subjects were merely told that the student wrote the essay as part of a class. In the other variants (the no-choice variants), subjects were told that the professor assigned the student either the pro-Castro or the anti-Castro stance. In both variants, the corresponding inference is that the writer actually believes in the stance. In the no-choice variants, the situation suggests that the writer is less likely to believe in the stance than in the choice variants. Jones and Harris predicted that subjects would be agnostic about the writer’s actual beliefs in the no-choice condition. However, subjects tended to make the corresponding inference even in the no-choice conditions—the so-called fundamental attribution error.

The FAE may result from a frugal cognitive heuristic that is usually effective. For example, personality does indeed exist, and when people make personality inferences, even a bad one, they have some pressure to do it as a result of a frugal cognitive load (Tversky & Simon, 1973). More refined judgments are required if people are less likely to be responsible for their attributes or if there is an incentive for making them (Keltner & Lerner, 1999). A possible explanation is that we have evolved to make accurate at quick approximations (Neuberg & Fiske, 1992).

Effectiveness of Heuristics

Heuristics and biases have ecological validity only if the frequency of everyday decision tasks is high (Gigerenzer, 1996, 2000). See also Biases as Attribution Heuristic, though, what is occurring relies on a repertoire of specific situations. More often than not, these rules lead to ill scenery in a range of fitness-relevant situations.

The direct demonstration of the FAE is only just begun. Gigerenzer (2000) describes a decision-making rules—behavioral decision algorithms or recognition heuristics. When a rule is applied, it will be higher on some dimension (e.g., which city is larger) or on some dimension that is in a recognition. San Diego or San Francisco, Goldstein & Gigerenzer (2000), wrong. This is the less-relevant rule and because both cities are known.

Gigerenzer and Goldstein have conducted empirical simulations that pit human decision algorithms against computational decision algorithms. Take the problem of recognition. If recognition is successful, the decision is correct. If recognition is not successful, the decision task is reconsidered. If recognition does not work, move to the next step in the procedure. It is not a method to discriminate between the algorithms.
inferences, even about people with whom they have had only brief interactions, they have some predictive validity (e.g., Colvin & Funder, 1991). If the FAE is the result of a frugal cognitive heuristic, one prediction is that it should take cognitive effort to avoid it. People who avoid the FAE do take longer on the task (Yost & Weary, 1996), and they are more likely to commit the FAE under conditions of cognitive load (Trope & Alfieri, 1997). A second prediction is that incentives for more refined judgments should diminish reliance on the heuristic. Indeed, people are less likely to make the FAE when they are told they will be held accountable for their attributions (Tetlock, 1985) or when they are given a monetary incentive for making correct attributions (Vonk, 1999). Moreover, people in more interdependent societies (e.g., China or Korea) are less likely to make the FAE than people in the United States or Europe (Norenzayan, Choi, & Nisbett, 2002). A possible explanation is that greater interdependency makes it more important to make accurate attributions of others’ mental states and internal dispositions (Neuberg & Fiske, 1987).

Effectiveness of Heuristics

Heuristics and biases research has generated much debate, for example, about the ecological validity of the problems, the conclusions to be drawn about the adequacy of everyday decision making, and the precision of the heuristics proposed (Gigerenzer, 1996, 2000; Hertwig & Gigerenzer, 1999; Kahneman & Tversky, 1996; see also Biases as Artifacts section). From an evolutionary psychology perspective, though, what is of interest is the broad consensus that human decision making relies on a repertoire of simple, fast, heuristic decision rules to be used in specific situations. Much experimental work has focused on the cases where these rules lead to illogicality or error, but the assumption is that over a broad range of fitness-relevant past scenarios, they were highly effective.

The direct demonstration of the effectiveness of heuristic decision rules has only just begun. Gigerenzer and Goldstein (1996) showed that a family of simple decision-making rules that uses only one datum can work as well or better than more complex algorithms that use all available information, for example, the recognition heuristic. When asked to make judgments about which of two alternatives will be higher on some criterion variable (e.g., who will succeed in a sports contest or which city is larger), someone who uses the heuristic will choose the alternative that is most familiar. For example, when asked which city has a larger population, San Diego or San Antonio, German students tend to guess right: San Diego (Goldstein & Gigerenzer, 1999). Paradoxically, American students tend to get it wrong. This is the less-is-more effect—American students cannot use recognition because both cities are known, so they rely on other cues, which are often invalid.

Gigerenzer and Goldstein (1996) augmented these surprising results with formal simulations that pitted one-reason heuristics, in this case, the take-the-best algorithm, against computationally sophisticated algorithms suggested by other cognitive scientists. Take-the-best assumes a decision tree structure. It starts with recognition. If recognition is a predictor of the criterion variable and one item in the decision task is recognized but the other is not, the recognized option is selected. If recognition does not apply (e.g., both options are recognized), then you move to the next step in the tree, searching memory for the most valid cue that discriminates between the alternatives. If the cue has a positive value for one
alternative but not for the other, *take-the-best* is completed. If both have a positive cue value, the next cue is retrieved from memory, and so on. The algorithm is fast because it is relatively simple, and it is frugal because it looks up only as much information as it needs. And, surprisingly, it performs as well or better than classically optimal algorithms that use all of the information available to the decision maker (e.g., multiple regression).

These results offer an existence proof. Decision-making adaptations can be simple but still as effective as complex strategies on real-world tasks. If researchers in the laboratory can exploit reliable features of the informational environment to create simple but highly effective reasoning strategies, natural selection can do so as well. Because selection has shaped different decision strategies for different adaptive problems, it seems unlikely that there is a single, general *take-the-best* or recognition adaptation. Rather, these simple strategies, and others like them, form the armamentarium that natural selection has tended to use in creating decision-making adaptations. We propose that combinations of these strategies are used by an array of distinct, domain-specific, evolved mental mechanisms. (For two interesting examples in the mate selection context, see Dugatkin, 1996; Miller & Todd, 1998.)

In sum, there is ample evidence of cognitive bias and error in humans. Some of these biases may result from the use of shortcuts, which are often effective. There is also evidence that relaxing constraints or increasing motivation for accuracy can improve reasoning in some domains. For these effects, it is important to note that the constraints explanation is not complete. Why are these biases the defaults? We have suggested that dispositional inference may be the default because personality has predictive power (also see Haselton & Buss, 2003). In the following section, we further suggest that the direction and content of biases is not arbitrary. Although these biases might arise in part because of the mind’s limited computational power, the particular forms they assume serve the fitness interests of the perceiver (also see Kenrick & Maner, in press; Krebs & Denton, 1997).

ERROR MANAGEMENT BIASES

Laboratory research on “error” . . . attracts much attention because it appears to have dismal implications for social reasoning. These implications are illusory, however, because an error is not the same thing as a “mistake.”

—Funder (1987)

Error Management Theory

Error management theory (EMT; Haselton & Buss, 2000; Haselton & Nettle, 2004) applies the principles of signal detection theory (Green & Swets, 1966) to judgment tasks to make predictions about evolved cognitive design. The central idea is that any cognitive mechanism can produce two types of error: a false positive (adopting a belief that is false) and a false negative (failing to adopt a belief that is true). The equivalents couched in perceptual terms are detecting a stimulus that does not exist (false positive) and failing to detect a stimulus that is real (false negative), but the logic is the same in either formulation.

On the face of it, it would seem that an optimal mechanism would make no errors of either type. However, many real-world tasks of judgment are probabilistic and, therefore, include error. For example, if the amount of error is relatively high, then EMT predicts an overall lower rate of error, consistent with the seemingly more accurate than the overall as long as the direction of bias is predictable. Of the two errors (the asymmetries produce their opposite errors are expected on the basis of this logic and so on).

We have argued that organisms designed to make highly maladaptive ones (Haselton & Buss, 2000) examples by outlining both the costs of errors, and the discuss each of the entries in complete review and a.

PROTECTIVE BIASES

Broadly speaking, these biases fall into three somewhat overlapping categories.

Auditory Looming. A prominent feature of many auditory systems designed to assess the apparent threatiness of predators, pathogens, and other agents such as allergy and cough, the presence of real threat. The impending threat is sensed by the recipient (Nesse, 1997). Arousal is also easily evoked, dangerous in the ancestral life of the species. This sense is also coupled with the cognitive and emotional systems of an individual.
and, therefore, include an irreducible amount of uncertainty. Auditory judgment, for example, is rendered uncertain by the presence of ambient noise, and some error is likely to occur however good the mechanism.

Crucially, the consequences for the organism of making the two types of error may not be the same. Fleeing from an area that contains no predator may be inconvenient but is much less costly than the failure to detect a predator that really is close by. EMT predicts that an optimal decision rule will minimize not the crude rate of error, but the net effect of error on fitness. Where one error is consistently more damaging to fitness than the other, EMT predicts that a bias toward making the less costly error will evolve; it is better to make more errors overall as long as they are of the relatively cheap kind. The magnitude and direction of bias are predicted to be affected by two factors: the asymmetry of the cost of the two errors (the bias will be toward making the less costly error, and larger asymmetries produce larger biases) and the amount of uncertainty in the task (biases are expected only when judgments are uncertain). For mathematical formalism of this logic and the expectations of EMT, see Haselton and Nettle (2004).

We have argued that many apparent biases may reflect the operation of mechanisms designed to make inexpensive, frequent errors rather than occasional disastrous ones (Haselton & Nettle, 2004). Table 25.2 on pages 732–733 provides examples by outlining the domain in which the effect occurs, the hypothesized costs of errors, and the expected outcome. In the following subsections, we discuss each of the entries in Table 25.2 along with other illustrative effects (for a complete review and analysis, see Haselton & Nettle, 2004).

Protective Biases

Broadly speaking, the possible error management effects we have identified fall into three somewhat overlapping clusters. The first are physically protective biases.

Auditory Looming A perceptual example is *auditory looming* (Neuhoff, 2001). People judge a sound that is rising in intensity to be closer, and approaching more rapidly, than an equidistant sound that is falling in intensity. In a series of experiments involving speakers moving on cables, Neuhoff (2001) shows that auditory looming leads to biased perceptions of the proximity of moving sound sources, as well as a general tendency to underestimate the distance of sound sources. Subjects judge an approaching sound source to be closer by than a receding one, when in fact they are located at distances equally far away from the subject (see Figure 25.1 on p. 734). There is a clear error management interpretation of this effect: It is better to be ready for an approaching object too early than too late (Neuhoff, 2001).

Allergy, Cough, and Anxiety Nesse (2001) argued for the *smoke detector principle* in bodily systems designed to protect from harm. He describes medical examples such as allergy and cough where a protective system is often mobilized in the absence of real threat. These defense systems appear to be overresponsive. Dampening them with drugs or treatment actually results in few troublesome effects on the recipient (Nesse, 2001). Psychological defense mechanisms such as anxiety are also easily evoked, especially in connection with things likely to have been dangerous in the ancestral environment, such as spiders, snakes, and potentially...
<table>
<thead>
<tr>
<th>Category and Domain</th>
<th>False Positive (FP)</th>
<th>Costs of FP</th>
<th>False Negative (FN)</th>
<th>Costs of FN</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protective:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approaching sounds</td>
<td>Ready too early</td>
<td>Low</td>
<td>Struck by source</td>
<td>High</td>
<td>Bias toward underestimating time to arrival</td>
</tr>
<tr>
<td>Protective:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foodstuffs</td>
<td>Eat a food type that is safe</td>
<td>Low</td>
<td>Ingest toxin or pathogen</td>
<td>High</td>
<td>Bias toward acquiring permanent aversion on the basis of one piece of evidence of toxicity</td>
</tr>
<tr>
<td>Protective:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseased persons</td>
<td>Avoid noninfectious person</td>
<td>May be low, depending on relationship</td>
<td>Become infected</td>
<td>Often very high</td>
<td>Tendency to avoid persons with physical afflictions, even if noninfectious</td>
</tr>
<tr>
<td>Social:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men's inference of female sexual interest</td>
<td>Inferring sexual interest where there is none</td>
<td>Rejection—relatively low</td>
<td>Inferring no interest when there is interest</td>
<td>Missed reproductive opportunity—high</td>
<td>Sexual overperception by men</td>
</tr>
<tr>
<td>Social:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women's inference of commitment</td>
<td>Inferring interest to commit where there is none</td>
<td>Desertion—high</td>
<td>Inferring unwillingness to commit where there is willingness</td>
<td>Delayed start to reproduction—relatively low</td>
<td>Underperception of commitment by women</td>
</tr>
<tr>
<td>Social:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social exchange</td>
<td>Attempt to free ride and get caught</td>
<td>Potential ostracism, especially in collectivist social situations—high</td>
<td>Cooperate when one could free ride</td>
<td>Give up an unnecessary benefit in exchange—relatively low</td>
<td>Bias toward cooperation</td>
</tr>
<tr>
<td>Self and Future:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beliefs about future achievements</td>
<td>Believe you can achieve things when costs of failure are low</td>
<td>Low</td>
<td>Believe you cannot achieve things even if benefit of failure is high</td>
<td>High if benefit of failure is low</td>
<td>Optimistic bias</td>
</tr>
<tr>
<td>Self and Future:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-actualization</td>
<td>Believe in yourself</td>
<td>High</td>
<td>Strive for personal growth</td>
<td>Low</td>
<td>Bias toward personal growth</td>
</tr>
<tr>
<td>Self and Future:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-esteem</td>
<td>Self-worth</td>
<td>High</td>
<td>Self-esteem</td>
<td>Low</td>
<td>Bias toward self-worth</td>
</tr>
<tr>
<td>Self and Future:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>Believe in your ability</td>
<td>Low</td>
<td>Self-efficacy</td>
<td>High</td>
<td>Bias toward self-efficacy</td>
</tr>
<tr>
<td>Self and Future:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-confidence</td>
<td>Confidence</td>
<td>Low</td>
<td>Self-confidence</td>
<td>High</td>
<td>Bias toward confidence</td>
</tr>
<tr>
<td>Social: Social exchange</td>
<td>Attempt to free ride and get caught</td>
<td>Potential ostracism, especially in collectivist social situations—high</td>
<td>Cooperate when one could free ride</td>
<td>Give up an unnecessary benefit in exchange—relatively low</td>
<td>Bias toward cooperation</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Self and Future: Beliefs about future achievements</td>
<td>Believe you can achieve things when you cannot</td>
<td>Low (if costs of failure are low)</td>
<td>Believe you cannot achieve things when you could</td>
<td>High (if benefit of success is high)</td>
<td>Optimistic bias (where benefits of success exceed costs of failure)</td>
</tr>
<tr>
<td>Self and Future: Control of events</td>
<td>Believe you control events that you have no control over</td>
<td>Low (if control behavior is inexpensive)</td>
<td>Believe your behavior ineffective when it is effective</td>
<td>Leads to passivity; potentially high</td>
<td>Illusion of control, superstitions</td>
</tr>
</tbody>
</table>

dangerous persons (Mineka, 1992; Seligman, 1971; Tomarken, Mineka, & Cook, 1989). A tendency for anxiety mechanisms to produce false positives is a plausible explanation for the observed prevalence of phobias and anxiety disorders (Nesse, 2001).

Food Aversions Food aversions may be similarly biased. Lasting aversion to a food is reliably acquired, in humans and other species, following a single incidence of sickness after ingestion (Garcia, Hankins, & Rusiniak, 1976; Rozin & Kalat, 1971). Given one data point (sickness followed the food type on one occasion), the system treats the food as if it is always illness inducing. There are again two possible errors here: The false positive may be inconvenient, but the false negative is more likely to be fatal. The system appears biased toward overresponsiveness to avoid illness.

Aversion to Diseased or Injured Persons Similar logic predicts an aversion to the ill. Little evidence of illness or contamination is required to provoke avoidance of a person, whereas much stronger evidence is required to warrant the inference that someone is safe or free from disease (Kurzban & Leary, 2001; Park, Faulkner, & Schaller, 2003). The error management account is similar to that for food aversions: The false negative (failing to avoid someone with a contagious disease) is highly costly, whereas the false positive (avoiding contact with a noncontagious person) may be inconvenient but is unlikely to be injurious. Thus, disease-avoidance mechanisms will be biased and tend to evince disgust and avoidance at many stimuli that are safe (e.g., deformity as a result of injury rather than disease). Such a bias may well be involved in SARS and Mad Cow disease, for far greater objective consequences.

Biases in Interpersonal Approach
The second cluster of biases, as just apply to both men and women. Interpersonal and differential effects of sex were once thought to come from reliably being more interested in mating and its consequences.

Sexual Overperception Sexually selected smile convey mere friendliness, trust, and sympathy (Buss, 2000) proposed that, in the context of the sexual interest. For another, human males, reproductive currency, is a number of women of reproductive potential, such as (Buss, 1994; Symons, 1979). Mating with greater numbers of competitors. For women, however, because of their relatively longer gestation and interbirth interval, finding a partner who is willing to invest would be key (and possibly even securing additional help, such as from kin, or Trivers, 1972). Thus, for women, a competition for a fertile partner because of a competitive family cost fitness error. An overall high reproductive fitness (reputation), but these observations are more evidence support the sexual selection hypothesis (for a review). In initial magnitude, women tend to rate women's body mass index is higher than men (Abbey, 1982). Other evidence, however, is more equivocal, women's ratings are comparable to third-party women's rating (Haselton & Buss, 2000). Sex researchers (2003) asked women and men to rate the attractiveness of women reported more interest in images as women who are higher their sexual interest than in images of men, but sexual overperception error. Men's ratings of facial expressions for hidden sexual arousal, fear, or anger are lower. Participants. They then asked participants to rate facial expressions for hidden sexual arousal, fear, or anger.
may well be involved in the panics associated with outbreaks of diseases such as SARS and Mad Cow disease, when more mundane risks nearer to home may be far greater objective dangers.

Biases in Interpersonal Perception

The second cluster of biases concerns interpersonal perception. Some of these apply to both men and women, whereas others are sex-specific. EMT predicts differential effects of sex in those domains where the costs and benefits of an outcome differ reliably between the sexes—domains that include, most obviously, mating and its consequences.

Sexual Overperception Courtship communications are often ambiguous. Does a smile convey mere friendliness, for example, or does it mean more? Haselton and Buss (2000) proposed that men possess a bias in interpreting cues to a woman's sexual interest. For ancestral men, they argued, it would have been more costly in reproductive currency to miss a woman's sexual interest than to overestimate it. In the evolutionary past, men's reproduction was limited primarily by the number of women of reproductive age to whom they were able to gain sexual access (Buss, 1994; Symons, 1979; Trivers, 1972). Men who were more often successful in mating with greater numbers of women tended to outreproduce their fellow male competitors. For women, partner number played a smaller role in reproduction. Because of their relatively heavy investment in each offspring produced and long interbirth interval, finding partners with heritable quality and a strong disposition to invest would likely have had a larger impact on reproductive success than would securing additional mating opportunities (Buss, 1994; Symons, 1979; Trivers, 1972). Thus, for men but not women, a missed mating opportunity with a fertile partner because of underestimated sexual interest would have been a high cost fitness error. An overestimation error may have carried some costs (e.g., to reputation), but these costs would have been lower overall. Several sources of evidence support the sexual overperception hypothesis (see Haselton & Buss, 2000, for a review). In initial meetings between male and female strangers, for example, men tend to rate women's flirtatiousness and sexual interest higher than do women (Abbey, 1982). The difference in male and female ratings is obtained when men's ratings are compared to the target woman's self-ratings and when compared to third-party women's ratings of the target woman's sexual interest (Abbey, 1982; Haselton & Buss, 2000). Similar results are obtained in naturalistic studies. Haselton (2003) asked women and men to report past instances of sexual misperception. Women reported more instances in the past year in which men underestimated their sexual interest than in which men underestimated it, suggesting a male sexual overperception bias. Men reported roughly equal numbers of overperception and underperception errors on the part of women, suggesting no bias in women (see Figure 25.2 on p. 736). Recently, Maner and colleagues documented further evidence of sexual overperception in men (Maner et al., in press). They induced romantic arousal, fear, or a neutral emotion state by showing films to study participants. They then asked participants to examine photographs of faces with neutral facial expressions for hidden cues ("micro-expressions") to their actual emotion state. Relative to the other film conditions, in the romantic arousal condition, men
increased their attribution of sexual interest for female faces. They showed no such effect for male faces. After viewing the romantic film, women did not increase attribution of sexual interest for either male or female faces. Conceptually similar sexual overperception effects are observed in the behaviors of males in some bird, insect, and mammalian species (Alcock, 1993, chap. 13; Domjan, Huber-McDonald, & Holloway, 1992).

Commitment Skepticism The reverse asymmetry may have applied to ancestral women as they decoded men's courtship communications surrounding commitment (Haselton & Buss, 2000). For a woman, inferring long-term commitment interest in a man in whom it was absent could have resulted in postconceptive abandonment, a high cost error associated with lowered offspring survival (Hurtado & Hill, 1992). Underestimating a man's commitment could also result in nontrivial costs such as delaying reproduction, but these costs, Haselton and Buss (2000) hypothesized, would have been lower on average than costs associated with desertion. Women may, therefore, possess a bias toward underestimating men's interest in commitment. Women do indeed rate the level of commitment communicated by male courtship behaviors such as giving of gifts and verbal affirmations of love as lower than do men (Haselton & Buss, 2000). In contrast, women and men tend to agree on the level of commitment communicated by women on the basis of the same behaviors (Haselton & Buss, 2000). In vignette studies, women more than men infer deceptive intentions in a man who is conveying his interest in forming a long-term relationship with a woman he would like to take out on a date (Andrews, 2002; see Figure 25.3).

Negative Outgroup Stereotyping There is evidence that members of competing groups (Brewer, 1979) and members of their own sex (odds, et al., 2000) are more likely to construct stereotypes of outgroup members, elevate additional costs of within-group cooperation, and invest more effort to be small or nonexistent. Women may be particularly sensitive to cues signaling increased costs and are, therefore, more likely to protect the self (Schaller, 2001). Participants completed a rating task in a laboratory and were instructed to rate ethnic stereotypes of out-group members in a brightly lit room (Schaller et al., 1999).
Figure 25.3 Commitment Underperception by Women. Women \((n = 108) \) and men \((n = 60) \) were asked to evaluate a potentially deceptive scenario. The man in the scenario might be interested in a short-term affair, although he claims to be interested in a long-term relationship. Participants' task was to infer the likelihood that the target man was deceptively interested in a short-term relationship or honestly conveying interest in a long-term relationship. Women (lighter colored bar) inferred greater deception (interest in a short-term relationship only; \(p < .01 \)) than did men. Source: *Attributing Honesty to a Signal Purporting to Reveal Mental State* by P. W. Andrews, June 2002, paper presented at the Human Behavior and Evolution Society Conference, Rutgers, NJ.

Negative Outgroup Stereotypes Humans appear to possess a bias toward inferring that members of competing coalitions (or out-groups) are less generous and kind (Brewer, 1979) and more dangerous and mean (Quillian & Pager, 2001) than are members of their own group. This may be understood as an adaptive bias. For ancestral humans, the costs of falsely assuming peacefulness on the part of an aggressor were likely to outweigh the comparatively low costs of elevated vigilance toward aggression, especially for inferences regarding out-group members. For in-group members, elevated inferences of aggressiveness would have carried the additional costs of within-coalition conflict; hence the negative bias might be expected to be small or nonexistent for in-group members. Schaller and colleagues proposed that cues signaling increased risk of injury, such as ambient darkness, might increase these effects because they raise the costs of failures to detect aggression and protect the self (Schaller, Park, & Mueller, 2003). As predicted, subjects who completed a rating task in a darkened laboratory increased their endorsement of racial and ethnic stereotypes connoting violence, relative to those who participated in a brightly lit room (Schaller et al., 2003). Darkness had no effect on other negative stereotypes of out-group others (e.g., laziness or ignorance; Schaller et al., 2003).

Social Exchange Bias Behavioral economists are puzzled by the fact that people cooperate in economic games with incentive structures favoring defection (Camerer & Thaler, 1995; Caporael, Dawes, Orbell, & van de Kragt, 1989; Henrich et al., 2001; Sally, 1995). In the one-shot prisoner's dilemma game, for example, participants are expected to defect rather than to cooperate. If partner A cooperates while B
Biases in Self-Judgment

The third cluster of biases concerns judgment about the self and personal efficacy. For a complete review, see Haselton and Nettle (2004). Here we briefly discuss the representative example of the positive illusions.

Positive Illusions Positive illusions are a well-known cluster of findings in judgment tasks concerning the self (Taylor & Brown, 1988). Individuals display unrealistically positive perceptions of their own qualities (Alicke, 1985), their likelihood of achieving positive outcomes in the future (Weinstein, 1980), and their degree of control over processes in the environment (Alloy & Abramson, 1979; Rudski, 2000). Two classes of evolutionary explanation have been proposed for such tendencies. First, individuals may have been selected to optimize the impression of their qualities that they display to observers. Given that observers will not be able to assess their cooperation except by playing behaviors that may not be optimal (Gaertner, & Toguchi, 2004).

An alternative explanation is that the asymmetry in the exchange bias (Yamagishi, Jin, & Kiyonari, 2000) may not be symmetric, whereas failing to treat others in domains where the cooperation may not be symmetric (Yamagishi, Jin, & Kiyonari, 2000). Note that this pattern is where fitness gains are.

The self-enhancement is pervasive and has not been associated with reducing positive illusions common predictions. Take a self-enhancement of extreme positivity, which may seem to predict an inflated self-image that is based on strategic performance. Performance on such task is not a valid measure of the experiment and audience preferences, which is a fuller account of the role of content (Clutton & Nettle, 2004).

Problem Formats

Gigerenzer (1997) proposed that economic prediction should present information as the number of times the result was truly

realistically observable in natura.
will not be able to accurately assess such qualities directly, individuals may display behaviors that strategically enhance the qualities conveyed (Sedikides, Gaertner, & Toguchi, 2003).

An alternative explanation is in error management terms. Nettle (2004) outlines such an explanation, building on the interpretation of the positive illusions given by Taylor and Brown (1988). In evaluating a possible behavior, there are two possible errors. We may judge that the behavior is worthwhile when in fact it achieves nothing to promote fitness, or we may judge that a behavior is not worthwhile when in fact it would have enhanced fitness to do it. The former error (a false positive) leads to behaviors that are useless, whereas the latter (a false negative) leads to passivity. The costs of the false positive and false negative errors may not be symmetrical—that is, trying and failing may not matter very much, whereas failing to try could be very costly, at least relative to competitors. Thus, evolution can be expected to produce mechanisms biased toward positive illusion in domains where there is uncertainty about outcomes, and the cost of trying and failing is reliably less than that of not trying where success was possible (Nettle, 2004). Note that this account does not predict blanket optimism, but optimism where fitness gains are potentially high relative to the cost of passivity.

The self-enhancement and error management accounts are not mutually exclusive, and it has not been possible to demonstrate their relative importance in producing positive illusions. It may be possible to have them make differential predictions. Take a scenario with some chance of a moderate gain and some chance of extreme physical pain, for example. Impression management would seem to predict an intuition of optimism about the chances of success because it is based on strategic presentation of desirable qualities such as courage and robustness. Error management, however, seems to predict an intuition of pessimism because it is designed to avoid very costly errors under uncertainty. Performance on such tasks could be significantly affected by both sex of respondent and audience presence. Such possibilities await empirical investigation. (For a fuller account of the error management approach and its predictions, see Haselton & Nettle, 2004.)

BIASES AS ARTIFACTS

One criticism of classic heuristics and biases research is that the strategies for identifying bias and evaluating cognitive performance might not be appropriate. Similarly, if problems presented in the laboratory are not those for which the human mind is designed, it should not be surprising that their responses appear to be systematically irrational. In this section, we discuss two general categories of artifact effects: evolutionarily invalid problem formats and evolutionarily invalid problem content.

Problem Formats

Gigerenzer (1997) proposed that tasks intended to assess human statistical prediction should present information in frequency form. Natural frequencies, such as the number of times an event has occurred in a given time period, are more readily observable in nature. Probabilities (in the sense of a number between 0
and 1) are mathematical abstractions beyond sensory input data, and information about the base rates of occurrence is lost when probabilities are computed (Cosmides & Tooby, 1996). Bayesian calculations involving frequencies are, therefore, computationally simpler than equivalent calculations involving probabilities, relative frequencies, or percentages. Whereas probability calculations need to reintroduce information about base rates, frequency calculations do not because this part of the computation is already done within the frequency representation itself (Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2001).

Humans should possess the ability to estimate the likelihood of events given certain cues. If this skill is a part of human reasoning, however, tasks involving probability input are less likely to reveal it than are tasks involving natural frequencies. Indeed, frequency formats do improve performance in tasks like the Linda problem. Whereas a probability format produces violations of the conjunction rule in between 50% and 90% of subjects, frequency formats decrease the rate of error to between 0 and 25% (Fiedler, 1988; Hertwig & Gigerenzer, 1999; Tversky & Kahneman, 1983; also see Cosmides & Tooby, 1996). The frequency interpretation of these results, however, is controversial (e.g., Gigerenzer, 1996; Kahneman & Tversky, 1996). Attempts to rule out competing hypotheses about confounds have generally supported the frequency hypothesis (see Cosmides & Tooby, 1996, experiments 5 and 6; also see Hertwig & Gigerenzer, 1999, experiment 4), but neither perspective appears to perfectly account for all of the available data (see Mellers, Hertwig, & Kahneman, 2001).

A related set of questions has been raised about the conversational pragmatics (see Grice, 1975) of bias-eliciting word problems. Hertwig and Gigerenzer (1999) note that probability (or probable) in the Linda task is a polysemous term with both mathematical and nonmathematical interpretations. Participants who are asked whether it is more probable that Linda is a bank teller or a feminist bank teller could infer that the researcher is asking which is a better description of Linda, in which case the conjunction effect is not technically an error. If participants assume that researchers are following maxims of conversational pragmatics, which would lead them to assume that all information provided by the researchers is relevant to solving the problem, a mathematical interpretation of the word probability is less likely, because it renders the description of Linda’s personal commitments irrelevant (Hertwig & Gigerenzer, 1999).

Problem Content

The perspective on cognitive design we have described suggests that researchers should not necessarily expect good performance in tasks involving abstract rules of logic. Falsification-based logic is sufficiently difficult for humans that university courses in logic, statistics, and research design attempt to teach it to students (often with only mixed success). Students have to learn that, in scientific practice, to test hypotheses they must look not only for confirmatory evidence but also for potentially falsifying evidence. If only confirmatory evidence is found, but no falsifying evidence, the hypothesis is supported although it still could be wrong. If even one piece of unambiguous falsifying evidence is found, the hypothesis is contradicted and is very unlikely to be right. It is difficult for students to intuitively grasp that searching for falsifying evidence is a stronger test of the hypothesis than confirmatory evidence.

Wason (1983) employed subjects to do their reasoning in broken. He demonstrated that the presence of p as a specification of the rule of appearance dramatically improves performance (Wason & Shapiro, 1975; see the discussion).

The conclusion to reasoning using abstract rules is to employ mechanisms of reasoning in the context of history. When problems (e.g., social context) of the Linda problem and other reasoning strategies. The term applied to the Wason task may be “logic” as tapped into by the past examples and associations in the environment and thus requires not only the description of Linda is close to a Bayesian optimal solution.

In summary, many accounts of reasoning and normative standards for performance. The contemporary view is that the approach that subjects blind to abstract and content blindness.
Wason (1983) empirically confirmed this in the laboratory using a task that required subjects to determine whether a conditional rule (if p then q) had been broken. He demonstrated that subjects recognized that confirmatory evidence (the presence of p) was relevant to the decision, but they often failed to check for falsifications of the rule (the absence of q). Research using the Wason task revealed a variety of apparent content effects (Johnson-Laird, Legrenzi, & Legrenzi, 1972; Wason & Shapiro, 1971), in which subjects' performance dramatically changed for the better.

In a series of now-classic experiments, Cosmides (1989) demonstrated that a number of the content effects could be attributed to a cheater-detection algorithm. When the content of the conditional rule involves social exchange (if you take the benefit [p], then you pay the cost [q]), people are spontaneously induced to look not only for benefits taken (p) but also costs not paid (not q), and performance dramatically increases from 25% correct (Wason, 1983) to 75% correct (Cosmides, 1989; see Cosmides & Tooby, Chapter 20, this volume, for an extensive discussion).

The conclusion to be drawn from these studies is not that humans are good at using abstract rules of logic. Rather, it is that humans have evolved problem-solving mechanisms tailored to problems recurrently present over evolutionary history. When problems are framed in ways congruent with these adaptive problems (e.g., social contract violation), humans can be shown to use appropriate reasoning strategies. The rarity of falsificatory choices in the nonsocial versions of the Wason task may reflect not so much error as the fact that the mental schemata tapped into by the problem are those for updating beliefs about probabilistic associations in the environment, which is not a deontic task but an indicative one and thus requires not falsification logic but Bayesian updating. When the question is construed in this sense, subjects' choices on the nonsocial versions are close to a Bayesian optimum (Oaksford & Chater, 1994).

In summary, many documented bias effects could reflect the application of normative standards that are not entirely appropriate for evaluating human performance. The content of problems also has been shown to have a strong effect on the approach that subjects take to reasoning; thus a normative standard that is abstract and content blind is bound to find human performance aberrant.

CONCLUSIONS

For most of its history, research on cognitive and social bias has been dominated by the failure and bleak implications of heuristics (see Kruger & Funder, in press). In a foundational paper in the heuristics and biases approach, Kahnemann and Tversky (1973) stated that “[people] rely on a limited number of heuristics which sometimes yield reasonable judgments and sometimes lead to severe and systematic errors” (p. 237). This relatively tempered viewpoint became exaggerated over the years. A Newsweek magazine account of the heuristics and biases research summarized it as showing that “most people . . . are woefully muddled information processors who often stumble on ill-chosen short-cuts to reach bad conclusions” (cited in Gigerenzer, Todd, & The ABC Research Group, 1999, p. 27). In reflecting on the history of social psychology, Aronson (1999) noted that “odious behavior ‘sin’ is at the heart of [the] most powerful research in social psychology” (p. 104). Browsing journals in social psychology, behavioral economics, and social
cognition reveals a proliferation of seemingly foolish bias effects (see Kruger & Funder, in press).

Adopting an evolutionary perspective turns this focus on its head. Natural selection is the force responsible for creating the intricate designs with an improbably perfect match to their environments. Complex visual systems with specialized features tailored to species' differing ecologies have evolved several times independently (Goldsmith, 1990). Reproductive adaptations allow animals to reproduce small copies of themselves, developmentally intact, complete with miniature versions of the adaptations that will enable their own reproduction. And, natural selection is responsible for the most complex system known, the human brain. How could natural selection produce systems that equip the brain that are prone to fail as a rule and succeed only in exceptional cases?

The conceptual tide might now be turning. There has been a recent shift toward artificial and adaptive explanations for bias, as well as a demonstration that simple mechanisms (heuristics) can function well in their proper domains. This reconceptualization has stimulated new developments in psychological theory and empirical research. Documenting content effects in biases—where bias effects emerge, recede, or reverse depending on the content of the judgment at hand—suggests that the mind does contain computationally distinct mechanisms governing reasoning in functionally distinct domains. Results demonstrating the presence of adaptive biases where they might logically be expected in one sex but not in the other and protective biases in response to stimuli that were ancestrally dangerous (but their conspicuous absence in response to modern threats) are key pieces of evidence in the debate about domain specificity. On the empirical side, these newer breeds of explanation cannot reasonably be dismissed as just-so stories. Although controversy about their interpretation remains, researchers from divergent perspectives have tested competing predictions about classic effects and contributed their findings to the body of knowledge in psychology. The adaptive bias explanation we have featured in this chapter, error management theory, has also stimulated investigation on particular biases that were predicted a priori (e.g., women's commitment skepticism).

These new developments do not necessarily diminish the lessons learned from earlier research. We occupy a world that is governed by novel economic rules, and knowledge of the ways in which our evolved psychology causes us to behave in ways that contrast with our self-interest in light of these rules should prove substantively important to human happiness (e.g., Thaler & Bernartzi, 2004). However, the recent amendments to theory do suggest a substantial overhaul to the conclusion that human judgment is fundamentally flawed, at least in the ways in which it has been depicted over the past three decades. When we observe humans in adaptively relevant environments, we can observe impressive design of human judgment that is free of irrational biases. Because of trade-offs in error costs, true biases also prove more functional than we would think based on first intuition. Some genuine biases might be functional features designed by the wisdom of natural selection.

REFERENCES

The Evolution of Morality?

Many evolutionists seem to believe that the purpose of human nature is to maximize reproductive success, and that morality is nothing more than a system of conventions that evolved to ensure the success of individual organisms. However, it is important to note that evolution is guided by natural selection, not by moral considerations.

There is no evidence that human behavior is determined by the standards of right and wrong. It is true that scholars insist that according to the principles of conventional morality, they will almost certainly reach a more precise understanding of what we mean by morality. But moral and immoral, and badness of people, and rules and duties of membership in which kinds of behavior...