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This article focuses on the stone inscriptions ascribed to Ashoka, the 3rd century BC ruler of the 
Mauryan dynasty in ancient India. The locations of 29 known inscriptions and 8 environmental  
predictors at 1 km pixel resolution were entered into a species distribution model, that reliably pre-
dicted the distribution of known Ashokan edicts (AUC score 0.934). Geologic substrate (33%), 
population density in AD 200 (21%), and slope (13%) explained majority of the variance in the 
Ashokan edict locations. We have identified 121 possible locations in the Indian subcontinent that 
conform to the same criteria where yet undiscovered inscriptions may be found. 
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TWO factors have combined that could increase the use of 
modelling in archaeology: the availability of global land-
scape geographic information system (GIS) datasets, and 
the need to identify and protect sites in areas jeopardized by 
development and other human impacts. An important po-
tential contributor to this process is species distribution 
modelling, which has been increasingly used across a va-
riety of fields, including biogeography, ecology, conserva-
tion biology, and climate change science to identify metrics 
that define and predict species and ecosystems ranges1–4. 
 Mapping the past, current and future distributions of 
species and ecosystems has developed at a rapid pace 
over the last ten years4,5. Species distribution modelling, 
also referred to as ecological niche or habitat suitability 
modelling, allows us to map the current distribution of a 
species and its potential past and future niches6. These 
distribution models have provided hypotheses concerning 
the location of species to an extent that new species and 
populations have been discovered7,8. 
 There are a number of theoretical and empirical simi-
larities between biological species and archaeological 
sites. Humans, like animals and plants, preferentially  
target favourable locations for their activities, which in 
the case of humans includes economic, social and ritual 
activities. Other factors conditioning the successful  
emplacement of human investments in the landscape  
include elevation, topography, climate and the geologic 
substrate9,10. Sites are fixed-place locations that represent 
the physical remains of human activities in the past, in 
which archaeologically recovered features and artefacts

provide confirmation that people found the locations suit-
able and worthy of investment. 
 The predictability of archaeological site location is 
based on a variety of criteria, not all of which are imme-
diately apparent. For example, our earliest ancestors hun-
dreds of thousands of years ago utilized caves as shelters 
prior to the development of built architecture, but not all 
known caves were occupied within a given region due to 
additional factors of selection, such as the preference for 
microclimates, resource availability, multiple adjacent 
caves, or proximity to water11. 
 This article focuses on the stone inscriptions ascribed 
to Ashoka, the 3rd century BC ruler of the Mauryan  
dynasty of northern India. Known as ‘edicts’, the texts  
are carved into the living rock and onto shaped stone pil-
lars found in the present-day countries of India, Pakistan 
and Afghanistan (Figure 1). The inscriptions contain  
pronouncements about kingship, administrative duty and 
religion, with some sections repeated verbatim from one 
location to the next. The Ashokan edicts are significant 
for three reasons. First, they constitute the first decipher-
able written documents in the Indian subcontinent coinci-
dent with the development of urbanism. Secondly, their 
emplacement as an act of royal proclamation throughout 
such a large area is interpreted as the evidence for the 
first substantial unifying political regime of the subconti-
nent12,13. Finally, the edicts are the first tangible expres-
sion of religious practices related to Buddhism, a ritual 
practice that started in the sixth century BC but only  
increased in visibility with the imperial sanction provided 
by Ashoka’s proclamations14,15. As documents of national 
and international significance, the Ashokan edicts are  
also a focal point of heritage management and preserva-
tion. Newly found inscriptions are opportunistically dis-
covered about once a decade, generating considerable 
public acclaim and scholarly visibility16–19. 
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 This study has three primary objectives. First, we test 
whether or not a species distribution modelling approach 
can be used to successfully identify known Ashokan edict 
locations. Second, we identify the environmental metrics 
that best explain the distribution of known Ashokan 
edicts. Third, we identify regions and locations with a 
high probability of yet undiscovered Ashokan edicts 
within the Indian subcontinent. 

Research design 

Species distribution modelling programs require two sets 
of inputs in order to create distribution maps of the  
targeted species within landscapes: species locality data 
from prior research, and environmental predictors in a 
GIS format2,20. 

Ashokan edict locations 

Known Ashokan edict locations were mapped on the  
basis of information found in the descriptive summaries 
of Allchin and Norman21 and Falk22, and on the basis of 
recent discoveries18. Map locations of latitude and 
 
 

 
 

Figure 1. Example of Ashokan edict at Erragudi. (Inset) Script. 
Source: Falk22. 

longitude were georeferenced in Google Earth as point 
locations, saved as KMZ files, and converted to ArcGIS 
shape files. This resulted in the placement of all known 
living-rock inscriptions to within 100 m as shown in  
Figure 2. The locations of edicts on moveable stone pil-
lars also are shown in the figure, although the pillar loca-
tions were not utilized in the predictive model because 
the pillars are known to have been moved in both medie-
val and modern times. The pillars themselves have been 
subject to reuse, including as road-rollers or religious 
symbols that are now completely encased or painted over 
in such a way that the original stone surface can no 
longer be seen21. 

Global GIS datasets 

GIS predictors were drawn from global datasets on geo-
logy, population, climate and topography to ascertain the 
non-random patterns of distribution in which multiple cri-
teria for placement can be assessed through predictive 
modelling and the use of spatially explicit GIS datasets. 
 We downloaded geological data in a vector map format 
for South Asia from the United States Geological Survey 
(USGS)23. This map was designed to help assess global 
oil and gas reserves as part of the USGS World Energy 
 
 

 
 

Figure 2. Location of known Ashokan edicts in the Indian subconti-
nent (numbers denote living-rock edicts; letters denote pillar edicts). 1, 
Ahraura; 2, Bairat; 3, Brahmagir; 4, Delhi; 5, Dhauli; 6, Erragudi; 7, 
Gavimath; 8, Girnar; 9, Gujarra; 10, Jatinga-Ramesvara; 11, Jaugada; 
12, Kalsi; 13, Kandahar I and II; 14, Lampaka (Pul-i Darunta); 15, 
Laghman I and II; 16, Mansehra; 17, Maski; 18, Nittur; 19, Palkigundu; 
20, Panguraria; 21, Rajula-Mandagiri; 22, Ratanpurwa; 23, Rupnath; 
24, Sahasram; 25, Sannati; 26, Shahbazgarhi; 27, Siddapur; 28, Sopara; 
29, Udegolam; A, Araraj; B, Bansi; C, Kausambi; D, Lumbini; E, Nan-
dangarh; F, Nigliva; G, Rampurva; H, Sanchi. 
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Project, and was created by compiling multiple UNESCO 
geologic maps primarily from 1976 and 1990 (ref. 23). 
This map was converted from vector format into 1 km 
raster format and classified by the dominant geologic 
formation within each pixel. This resulted in 38 geologic 
substrates in the study region. 
 The recent development of the History Database of the 
Global Environment (HYDE 3.1) provides a spatially  
explicit database of human-induced global land-use 
change over the past 12,000 years24,25. We used popula-
tion density data from the available timescales from the 
HYDE 3.1 dataset that bracket the period of interest: 
1000 BC, AD 0, and AD 200 (refs 24, 25). The data were 
resampled to 1 km pixel resolution. 
 There have been significant advances in past, current 
and future climatic datasets at 1 km resolution20,26. We 
obtained current climate data from WorldClim (2013) 
version 1.4 (ref. 27), which includes a set of global cli-
mate layers derived from weather station monthly mean 
temperature and precipitation data26. WorldClim contains 
19 derived bioclimatic metrics that represent biologically 
meaningful climate conditions that have been used to 
identify the climatic niche of species1. A subset of  
metrics hypothesized to be associated with human habita-
tion and agriculture was selected to maximize metric con-
tribution to models: annual mean temperature and annual 
mean precipitation. 
 We downloaded elevation data for the regions from the 
Consortium for Spatial Information (CGIAR-CSI), which 
provides 5  5 mosaicked tiles of 90 m elevation grids. 
These grids were derived from elevation data, originally 
collected by NASA’s Shuttle Radar Topography Mission 
(SRTM) in 2003. We resampled the elevation data to 
1 km spatial resolution and calculated slope using  
ArcGIS 10.0 (ESRI, Redlands, CA, USA). 

Modelling approach 

We used Maxent (version 3.3.3a), a maximum entropy 
algorithm, to model the current relationship for known 
Ashokan edict sites and mapped suitable habitat on the 
basis of climate, topography, geology and population28. 
Maxent is an algorithm tailored for presence-only species 
data that have found wide use in modelling current and 
hindcasting species distribution, with a high performance 
on presence data that are both limited and spatially bi-
ased29,30. Statistics of model performance were calculated 
using a ten-fold bootstrap replication. This method was 
chosen due to the small sample size and involves random 
sampling of the dataset with replacement followed by an 
analysis of the mean and range from the bootstrap sam-
ples to validate the model30. The Maxent output consists 
of a gridded distribution map with each cell having a  
logistic index of suitability, or probability of presence  
between 0 and 1. We used a minimum training presence 

threshold which identifies the minimum predicted area 
possible by locating pixels at least as suitable as the 
known localities30,31. Model predictions were visualized 
in ARCMAP 10.0. All predictor metrics were resampled 
to 1 km pixel size and models run using data from all 
sites. 
 Overall model performance was evaluated using the 
area under the receiving operator characteristics curve 
(AUC). When using presence-only data, the AUC repre-
sents the ability of the model to classify presence more 
accurately than random prediction, and ranges from 0.5 
(random prediction) to 1.0 (perfect prediction). An AUC 
value greater than 0.75 would suggest that the model is 
potentially useful for predicting distributions29. We used 
a Wilcoxon rank sum test to evaluate if the model AUC 
values were significantly greater than that value for  
random prediction (0.5). 

Landscape analysis 

Utilizing Google Earth imagery, we conducted a visual 
search of the Maxent-derived high-probability grids to 
identify topographical locations (outcrops) and geologic 
(rock type) attributes similar to known Ashokan edict  
location as photographed in Falk22 and based on personal 
observations (Figure 3). One kilometre pixels with a 
probability 75% of containing edicts were overlaid on 
Google Earth and searched along a north-to-south gradi-
ent. Each pixel was assigned a unique identification num-
ber and classified as high likelihood or low likelihood. 
Locations designated as high likelihood were those that 
looked similar to known edict locations in Falk22 and 
generally satisfied two additional criteria: (1) located on 
raised, lone outcrops, and (2) containing many visible 
boulders. Low likelihood areas were places without stones, 
stone outcrops or that contained minimal topography 
variation. Other criteria also were applied to push 
 
 

 
 

Figure 3. Google Earth imagery of known Ashokan edict location at 
Palkigundu. 
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Maxent-derived grids into the low likelihood category, 
such as locations in large cities based on the logic that if 
an outcrop was located in the area, it is likely that it has  
already been explored by the surrounding population and 
does not contain any new edicts. 

Results 

Ashokan edict distribution models 

When distribution models were run based on the 29 
known locations, they were successful in reliably predict-
ing the distribution of Ashokan edicts in the Indian sub-
continent (Figure 4). Compared to the random prediction 
(0.5), the AUC score was highly statistically significant 
(AUC = 0.934, P < 0.001, one-tailed Wilcoxon rank sum 
test of AUC, S.D. = 0.022). This suggests that the model 
is potentially useful for predicting the distribution of 
Ashokan edicts and that the environmental metrics have a 
discernible effect on Ashokan edict regional distribution. 

Variable contribution 

The environmental variables of geologic substrate (33%), 
population density in AD 200 (21%), and slope (13%)  
explained majority of the variance in known Ashokan 
edict locations (Table 1). Geologic substrate was the  
metric most associated with edict location and was found 
to have the highest gain when used in isolation, suggesting  
 
 

 
 

Figure 4. Predicted distribution model of Ashokan edicts on the basis 
of geology, population, climate and topography. 

that it has the most useful information (Table 1). Addi-
tionally, geologic substrate had the greatest decrease in 
gain when omitted from the model, suggesting that it has 
the most information not present in the other variables. 
Elevation (9%), annual mean precipitation (8%), annual 
mean temperature (7%), population in AD 0 (5.6%), and 
population in 1000 BC (3.4%) contributed to the location 
of the edicts, but explained less of the variance. 

Undiscovered Ashokan edicts 

The Maxent-derived predicted suitability models identi-
fied 2725 1 km pixels with a probability 75% of con-
taining Ashokan edicts (see Supporting Material A 
online). After examining each 1 km pixel visually within 
Google Earth, 121 pixels were classified as high likeli-
hood and matched known Ashokan edict attributes (see 
Supporting Material B online). Examples include points 
of interest 1973 and 2024 located on small, isolated out-
croppings that rise higher than the surrounding region, a 
configuration similar to the known edict locations of 
Dhauli, Jaugadh, and Palkigundu (Figure 5). These loca-
tions have various boulder-sized rocks, as seen in the  
images that would make a suitable place for inscriptions. 

Discussion 

Can species distribution models be applied to  
Ashokan edicts? 

It is clear that known Ashokan edicts have non-random 
patterns of distribution. Compared to species distribution 
models of plants and animals with a similar number of 
point locations, our model has a similar if not slightly 
higher AUC score of accuracy7,8,20,32. This suggests that 
species distribution modelling can be used for select type 
of archaeological sites that are widely distributed across a 
region or landscape and contain over 30 point locations,  
 
 
Table 1. Ashokan sample size (train/test), model mean test AUC, and 
mean percentage contribution and permutation importance of each  
 variable to the model from ten-fold cross validation 

 Percentage Permutation 
Metrics contribution importance 
 

No. sites 29  
AUC 0.934  
Geology 32.7 16.2 
Population AD 200 20.7 18.2 
Slope 13.1 20.2 
Elevation 9.1 23.8 
Annual precipitation 8.2 7.8 
Annual temperature 7.2 5.3 
Population AD 0 5.6 6 
Population 1000 BC 3.4 2.4 
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Figure 5. Examples of high likelihood location filtered from  
the Maxent and landscape refinements within pixel 1973 (a) and  
2024 (b). 
 
 
thus applicable to other types of archaeological sites such 
as Palaeolithic caves, megaliths and ritual sites. The pow-
er of species distribution modelling is that it can identify 
the amount of variance explained by different environ-
mental metrics and provide a hypothesis concerning the 
predicted distribution of a site that can be tested and  
accepted or rejected like any other in science33. 
 GIS datasets on geologic substrate, topography and 
human population explained the most variance in Asho-
kan edict distributions. Geology was the variable most 
associated with edict location. Based on geologic sub-
strate, 16 edicts were located on undivided Precambrian 
rocks, 9 on Quaternary sediments, 2 on Tertiary and Cre-
taceous volcanic rocks, 2 on Paleozoic rocks, and 1 on 
Tertiary igneous rocks. This suggests that edict inscribers 
may have had a preference for certain geologic substrates 
that occur in the landscape. 
 Slope and elevation were significant environmental 
metrics with an average of 0.49 slope for all edicts at 
1 km pixel resolution. This is consistent with the rocky 
outcrops that currently contain Ashokan edicts, which 
stand out vertically over the landscape; however, varia-
tion in the slope is minor at 1 km resolution. It may have 
been the case that whoever inscribed the edicts preferred 
places that were slightly higher than the surrounding 
landscape, but not at the absolute summit of hills. This 
factor characterizes most of the known edict loca-
tions21,23, although there is some variability, such as the 
Delhi edict that is located on a very low rise and the edict 
that is located essentially flat on the ground at Rajula-
Mandagiri. 

 The significance of population in AD 200 may not ini-
tially seem logical given that the edicts were emplaced 
about half a millennium earlier. However, the dating of 
archaeological sites for this time period in the subconti-
nent is relatively imprecise; in any case it is not surpris-
ing that the location of edicts would be placed in areas 
highly suited to human habitation that were likely to have 
grown in size over time resulting in their greater archaeo-
logical visibility by AD 200. The HYDE database indica-
tors of population in 1000 BC (3.4%) and AD 0 (5.6%) 
show that incremental population growth did contribute 
to edict location. It also may be the case that some edicts 
were carved after the third century BC34. What is clear is 
that historic GIS datasets, like HYDE 3.1, should be use-
ful in the future of GIS modelling of archaeological sites 
at 1 km spatial resolution. 
 Additional future inputs should be sought; for example, 
time-series data at 1 km on political influence, ethnicity 
and linguistics would be extremely valuable both as a 
predictive variable and to assess the impacts of the unify-
ing nature of Ashoka’s proclamations. These variables 
could be created as GIS polygons by experts in the field 
for different time periods that correspond to the HYDE 
dataset and would be important additions to future  
versions of the HYDE dataset.  

Finding undiscovered edicts 

The use of a predictive GIS model serves a practical and 
cost-effective function by identifying areas where tar-
geted surveys are most likely to reveal the presence of 
previously unknown sites at a time when there is in-
creased pressure on landscapes for development. Species 
distribution models provide at least two novel ways to 
systematically search for archaeological sites within a 
landscape or region. First, using species distribution 
models over the landscape, one can systematically check 
areas based on those with the highest probability (e.g. 
95%). Second, one can visually interpret each location to 
identify potential locations in the field. As computer sci-
entists have noted, humans often are more effective than 
computer algorithms in searching for patterns and anoma-
lies in imagery or visual landscapes35,36. Humans also are 
able to more easily include weighted relevance beyond 
simple presence–absence determinations36,37. Both tech-
niques add a new dimension to traditional search methods 
used to discover new archaeological sites. 
 We believe that a ground-truthing search for edicts in 
any of these locations would yield a higher-than-average 
probability of finding new inscriptions. The development 
of a purpose-specific research project to examine each of 
the 121 high likelihood areas represents an ideal opportu-
nity for distributed research projects based in local  
academic institutions in the subcontinent, utilizing the 
principles of volunteered geographic information (VGI) 
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and citizen science38–40. We therefore seek to release in-
formation about the location of high likelihood areas into 
the public domain for use by in-country scholars and  
students. 
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